Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-31T10:04:32.227Z Has data issue: false hasContentIssue false

Formation of quasicrystalline phases in an Al–Cu–Co–Fe alloy obtained by using a gravity chill-casting technique

Published online by Cambridge University Press:  31 January 2011

R. Perez
Affiliation:
Laboratorio de Cuernavaca, Instituto de Fisica UNAM P.O. Box 139-B, 62191 Cuernavaca Mor., Mexico
A. Arizmendi
Affiliation:
Laboratorio de Cuernavaca, Instituto de Fisica UNAM P.O. Box 139-B, 62191 Cuernavaca Mor., Mexico
J.A. Juarez-Islas
Affiliation:
Laboratorio de Cuernavaca, Instituto de Fisica UNAM P.O. Box 139-B, 62191 Cuernavaca Mor., Mexico
L. Martinez
Affiliation:
Laboratorio de Cuernavaca, Instituto de Fisica UNAM P.O. Box 139-B, 62191 Cuernavaca Mor., Mexico
Get access

Abstract

A study of the quasicrystalline phases obtained from a quaternary alloy of Al–Cu–Co–Fe is carried out. The formation of these phases is based on a gravity chill-casting technique. The alloy was cast in a wedge-shaped copper mold. Optical and scanning electron micrographs show a characteristic dendritic growing in regions close to the wedge edge. These types of dendrites display apparent symmetries that resemble the tenfold, fivefold, and eightfold symmetries obtained in quasicrystalline materials. Electron diffraction patterns, in addition to x-ray diffraction patterns, show two kinds of quasicrystalline phases. The icosahedral and decagonal phases coexist in these types of alloys also with binary and ternary compounds of intermetallic nature.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Shechtman, D.Blech, I.Gratias, D. and Cahn, J.W.Phys. Rev. Lett. 53, 1951 (1984).CrossRefGoogle Scholar
2Perez, R.J. Mater. Sci. 27, 5141 (1992).Google Scholar
3Lilienfeld, D.A.Nastasi, M.Johnson, H.H.Ast, D.G. and Mayer, J.W.Phys. Rev. Lett. 55, 1587 (1985).CrossRefGoogle Scholar
4Kreider, K. G.Biancaniello, F. S. and Kaufman, H. J.Scripta Metall. 21, 657 (1987).CrossRefGoogle Scholar
5Follstaedt, D.M. and Knapp, J.A.Phys. Rev. Lett. 56, 1827 (1986).CrossRefGoogle Scholar
6Poon, S.J.Drehman, A. J. and Lawless, K. R.Phys. Rev. Lett. 55, 2324 (1985).CrossRefGoogle Scholar
7Eckert, J.Schultz, L. and Urban, K.Acta Metall. Mater. 39 (7), 1497 (1991).CrossRefGoogle Scholar
8Hiraya, K.Zang, B. P.Hirabashi, M.Inoue, A. and Masumoto, T.Jpn. J. Appl. Phys. 27 (12), L2252 (1988).Google Scholar
9Tsai, A. P.Inoue, A. and Masumoto, T.Mater. Trans. JIM 30 (2), 150 (1989).CrossRefGoogle Scholar
10Juarez-Islas, J. A., Warrington, D. H. and Jones, H.J. Mater. Sci. 24, 2076 (1989).CrossRefGoogle Scholar
11Selected Powder Diffraction for Metals and Alloys, Int. Center for Diffraction Data, JCPDS, Swarthmore, PA, Vols. I and II (1978).Google Scholar