Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-31T13:29:03.271Z Has data issue: false hasContentIssue false

High energy ball-milled Ti2RuFe electrocatalyst for hydrogen evolution in the chlorate industry

Published online by Cambridge University Press:  31 January 2011

Marco Blouin
Affiliation:
INRS-Énergie et Matériaux, 1650 Boulevard Lionel-Boulet, C.P. 1020, Varennes, Québec, Canada J3X 1S2
Daniel Guay*
Affiliation:
INRS-Énergie et Matériaux, 1650 Boulevard Lionel-Boulet, C.P. 1020, Varennes, Québec, Canada J3X 1S2
Jacques Huot
Affiliation:
Technologie des Matériaux, Institut de Recherche d'Hydro–Québec, 1800 Boulevard Lionel-Boulet, Varennes, Québec, Canada J3X 1S1
Robert Schulz
Affiliation:
Technologie des Matériaux, Institut de Recherche d'Hydro–Québec, 1800 Boulevard Lionel-Boulet, Varennes, Québec, Canada J3X 1S1
*
a)Author to whom correspondence should be addressed.
Get access

Abstract

The high energy mechanical alloying of a Ti–Ru–Fe powder mixture (atomic ratio 2 : 1: 1) has been performed by extensive ball-milling in a steel crucible. The structural evolution of the resulting materials has been studied by x-ray powder diffraction analysis. The identification of the various phases present in the materials, as well as the crystallite size and strain, has been performed by Rietveld refinement analysis. In the first stage of the material transformation, Ru or Fe atoms dissolved into Ti to yield to the formation of β–Ti. Upon further ball-milling, almost all the original constituents of the powder mixture have disappeared and a new simple cubic Ti2RuFe phase is formed, with a crystallite size as small as 8 nm. The electrochemical properties of these materials have been tested in a typical chlorate electrolyte by cold-pressing the powders into disk electrodes. At 20 h of ball-milling, where the phase concentration of Ti2RuFe reaches 96%, a reduction of the activation overpotential at 250 mA cm−2 of nearly 250 mV is observed when compared to that of a pure iron electrode.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Birringer, R., Mater. Sci. Eng. A 117, 33 (1989).CrossRefGoogle Scholar
2.Siegel, R. W., Mater. Res. Bull. XV (10), 60 (1990).Google Scholar
3.Siegel, R. W., Ann. Rev. Mater. Sci. 21, 559 (1991).CrossRefGoogle Scholar
4.Yamashita, H., Sakai, N., Funabiki, T., Yoshida, S., and Isozumi, Y., J. Chem. Soc., Faraday Trans. 1 83, 2895 (1987).CrossRefGoogle Scholar
5.Yoshizawa, Y., Oguma, S., and Yamauchi, K., J. Appl. Phys. 64, 6044 (1988).CrossRefGoogle Scholar
6.Fecht, H. J., Hellstern, E., Fu, Z., and Johnson, W. L., in Advances in Powder Metallurgy (MPIF, Princeton, NJ, 1989), Vol. 2, pp. 111122.Google Scholar
7.Schulz, R., Huot, J-Y., Trudeau, M. L., Dignard-Bailey, L., Yan, Z. H., Jin, S., Lamarre, A., Ghali, E., and Van Neste, A., J. Mater. Res. 9, 2998 (1994).CrossRefGoogle Scholar
8.Van Neste, A., Yip, S. H., Jin, S., Boily, S., Ghali, E., Guay, D., and Schulz, R., Mater. Sci. Forum 225–227, 795 (1996).CrossRefGoogle Scholar
9.Blouin, M., Guay, D., Boily, S., Van Neste, A., and Schulz, R., Mater. Sci. Forum 225–227, 801 (1996).CrossRefGoogle Scholar
10.Izumi, F., in The Rietveld Method, edited by Young, R. A. (Oxford University Press, Oxford, 1993), pp. 236253.CrossRefGoogle Scholar
11.Kim, Y-I. and Izumi, F., J. Ceram. Soc. Jpn. 102, 401 (1994).CrossRefGoogle Scholar
12.Rietveld, H. M., in The Rietveld Method, edited by Young, R. A. (Oxford University Press, Oxford, 1993). pp. 3942.CrossRefGoogle Scholar
13.Young, R. A., in The Rietveld Method, edited by Young, R. A. (Oxford University Press, Oxford, 1993), pp. 138.CrossRefGoogle Scholar
14.Villars, P. and Calvert, L. D., Pearson's Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed. (ASM INTERNATIONAL, Materials Park, OH, 1991).Google Scholar
15.Murray, J. L., Alloy Phase Diagrams 2, 320 (1981).CrossRefGoogle Scholar
16.Ray, R., Giessen, B. C., and Grant, N., J. Metal. Trans. 3, 627 (1972).CrossRefGoogle Scholar
17.Zaluski, L., Tessier, P., Ryan, D. H., Doner, C. B., Zaluska, A., Ström-Olsen, J. O., Trudeau, M. L., and Schulz, R., J. Mater. Res. 8, 3059 (1993).CrossRefGoogle Scholar
18.Raub, V. E., and Röschel, E. Z., Metallk. 12, 455 (1963).Google Scholar
19.Blouin, M., Guay, D., and Schulz, R., Phys. Rev. B, submitted.Google Scholar
20.Izumi, F., Physica C 160, 235 (1980).CrossRefGoogle Scholar
21.Cullity, B. D., Elements of X-ray Diffraction (Addison-Wesley Publishing Company, Don Mills, Ontario, 1978), pp. 383396.Google Scholar