Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-09T14:40:42.637Z Has data issue: false hasContentIssue false

Influence of deposition rate on the properties of thick YBa2Cu3O7–δ films

Published online by Cambridge University Press:  31 January 2011

S. R. Foltyn
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
E. J. Peterson
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
J. Y. Coulter
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
P. N. Arendt
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Q. X. Jia
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
P. C. Dowden
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
M. P. Maley
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
X. D. Wu
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
D. E. Peterson
Affiliation:
Superconductivity Technology Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

To investigate potential limits to the rate at which high-quality YBa2Cu3O7–δ can be deposited, we have produced a series of 1 μm thick films by pulsed laser deposition on single-crystal SrTiO3 substrates at average rates ranging from 2 Å/s to 240 Å/s. The critical current density of low-rate films was over 2 MA/cm2 at 75 K, self field, but dropped linearly with rate to about 1 MA/cm2 at the upper end of the range. In addition, the superconducting transition temperature, resistivity above the transition, and performance in an applied magnetic field were all degraded by increasing the deposition rate. A change in c-axis lattice parameter suggests that possible causes for this degradation are oxygen deficiency or cation disorder with the latter being the more likely. Annealing high-rate films at 790 °C for as little as 20 min improved critical current density to within 20% of low-rate values, and resulted in dramatic improvements in other film properties as well.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, Y., Tanabe, N., Kohno, O., and Ikeno, Y., Appl. Phys. Lett. 60, 769 (1992); Y. Iijima, K. Onabe, N. Futaki, N. Tanabe, N. Sadakara, O. Kohno, and Y. Ikeno, J. Appl. Phys. 74, 1905 (1993).CrossRefGoogle Scholar
2.Wu, X. D., Foltyn, S.R., Arendt, P. N., Townsend, J., Adams, C., Campbell, I. H., Tiwari, P., Coulter, J. Y., and Peterson, D. E., Appl. Phys. Lett. 65, 1961 (1994); X. D. Wu, S.R. Foltyn, P. N. Arendt, W. R. Blumenthal, I. H. Campbell, J. D. Cotton, J. Y. Coulter, W. L. Hults, M. P. Maley, H. F. Safar, and J. L. Smith, Appl. Phys. Lett. 67, 2397 (1995).CrossRefGoogle Scholar
3.Goyal, A., Norton, D. P., Budai, J. D., Paranthaman, M., Specht, E. D., Kroeger, D. M., Christen, D. K., He, Q., Saffian, B., List, F. A., Lee, D. F., Martin, P. M., Klabunde, , Hartfield, E., and Sikka, V. K., Appl. Phys. Lett. 69, 1795 (1996).CrossRefGoogle Scholar
4.Hammond, R. H., Proc. 8th Int. Symp. on Superconductivity (ISS'95), Oct. 30–Nov. 2, 1995, Hamamatsu, Japan.Google Scholar
5.Wu, X. D., Muenchausen, R. E., Foltyn, S. R., Estler, R. C., Dye, R. C., Nogar, N. S., Garcia, A. R., Martin, J., and Tesmer, J., Appl. Phys. Lett. 56, 1481 (1990); X. D. Wu, R. E. Muenchausen, S. R. Foltyn, R. C. Estler, R. C. Dye, A. R. Garcia, N. S. Nogar, P. England, R. Ramesh, D. M. Hwang, T. S. Ravi, C. C. Chang, T. Venkatesan, X. X. Xi, Q. Li, and A. Inam, Appl. Phys. Lett. 57, 523 (1990); X. D. Wu, R. E. Muenchausen, S. R. Foltyn, R. C. Estler, N. S. Nogar, A. D. Rollett, C. C. Chang, P. England, R. Ramesh, D. M. Hwang, and T. S. Ravi, IEEE Trans. Magn. 27, 1445 (1991).CrossRefGoogle Scholar
6.Hubler, G. K., in Pulsed Laser Deposition of Thin Films, edited by Chrisey, D. B. and Hubler, G. K. (John Wiley and Sons, Inc., New York, 1994), Chap. 13.Google Scholar
7.Foltyn, S. R., Tiwari, P., Dye, R. C., Le, M. Q., and Wu, X. D., Appl. Phys. Lett. 63, 1848 (1993).CrossRefGoogle Scholar
8.Chang, C. C., Wu, X. D., Ramesh, R., Ravi, T. S., Venkatesan, T., Hwang, D. M., Muenchausen, R. E., Foltyn, S. R., and Nogar, N. S., Appl. Phys. Lett. 57, 1814 (1990).CrossRefGoogle Scholar
9.Andersen, N. H., Lebech, B., and Poulsen, H. F., Physica C 172, 31 (1990).CrossRefGoogle Scholar
10.Jorgensen, J. D., Veal, B. W., Paulikas, A. P., Nowicki, L. J., Crabtree, G. W., Claus, H., and Kwok, W. K., Phys. Rev. B 41, 1863 (1990).CrossRefGoogle Scholar
11.Ye, J. and Nakamura, K., Phys. Rev. B 48, 7554 (1993).CrossRefGoogle Scholar
12.Schulz, R., Simoneau, M., and Lanteigne, J., Physica C 233, 113 (1994).CrossRefGoogle Scholar
13.Roas, B., Schultz, L., and Saemann-Ischenko, G., Phys. Rev. Lett. 64, 479 (1990).CrossRefGoogle Scholar