Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-09T23:36:44.040Z Has data issue: false hasContentIssue false

Microstructure and mechanical properties of slowly cooled Cu47.5Zr47.5Al5

Published online by Cambridge University Press:  03 March 2011

J. Das*
Affiliation:
FG Physikalische Metallkunde, FB 11 Material- und Geowissenschaften, Technische Universität Darmstadt, D-64287 Darmstadt, Germany; and Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, D-01069 Dresden, Germany
S. Pauly
Affiliation:
FG Physikalische Metallkunde, FB 11 Material- und Geowissenschaften, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
C. Duhamel
Affiliation:
FG Physikalische Metallkunde, FB 11 Material- und Geowissenschaften, Technische Universität Darmstadt, D-64287 Darmstadt, Germany
B.C. Wei
Affiliation:
Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, People’s Republic of China
J. Eckert
Affiliation:
FG Physikalische Metallkunde, FB 11 Material- und Geowissenschaften, Technische Universität Darmstadt, D-64287 Darmstadt, Germany; and Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, D-01069 Dresden, Germany
*
a) Address all correspondence to this author. e-mail: j.das@ifw-dresden.de
Get access

Abstract

Cu47.5Zr47.5Al5 was prepared by arc melting and solidified in situ by suction casting into 2–5-mm-diameter rods under various cooling rates (200–2000 K/s). The microstructure was investigated along the length of the rods by electron microscopy, differential scanning calorimetry and mechanical properties were investigated under compression. The microstructure of differently prepared specimens consists of macroscopic spherical shape chemically inhomogeneous regions together with a low volume fraction of randomly distributed CuZr B2 phase embedded in a 2–7 nm size clustered “glassy-martensite” matrix. The as-cast specimens show high yield strength (1721 MPa), pronounced work-hardening behavior up to 2116 MPa and large fracture strain up to 12.1–15.1%. The fracture strain decreases with increasing casting diameter. The presence of chemical inhomogenities and nanoscale “glassy-martensite” features are beneficial for improving the inherent ductility of the metallic glass.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Peker, A. and Johnson, W.L.: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
2Supercooled Liquid, Bulk Glassy and Nanocrystalline States of Alloys, edited by Inoue, A., Yavari, A.R., Johnson, W.L. and Dauskardt, R.H. (Mater. Res. Soc. Symp. Proc. 644, Warrendale, PA, 2001).Google Scholar
3Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).Google Scholar
4Eckert, J., Mattern, N., Zinkevitch, M., and Seidel, M.: Crystallization behavior and phase formation in Zr–Al–Cu–Ni metallic glass containing oxygen. Mater. Trans. 39, 623 (1998).CrossRefGoogle Scholar
5Gebert, A., Eckert, J., and Schultz, L.: Effect of oxygen on phase formation and thermal stability of slowly cooled Zr65Al7.5Cu7.5Ni10 metallic glass. Acta Mater. 46, 5475 (1998).Google Scholar
6Bruck, H.A., Christman, T., Rosakis, A.J., and Johnson, W.L.: Quasi-static constitutive behavior of Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 bulk amorphous alloys. Scripta Metall. Mater. 30, 429 (1994).Google Scholar
7Choi-Yim, H., Busch, R., Köster, U., and Johnson, W.L.: Synthesis and characterization of particulate reinforced Zr57Nb5Al10Cu15.4Ni12.6 bulk metallic glass composites. Acta Mater. 47, 2455 (1999).CrossRefGoogle Scholar
8Eckert, J., Kübler, A., and Schultz, L.: Mechanically alloyed Zr55Al10Cu30Ni5 metallic glass composites containing nanocrystalline W particles. J. Appl. Phys. 85, 7112 (1999).Google Scholar
9Choi-Yim, H., Schroers, J., and Johnson, W.L.: Microstructures and mechanical properties of tungsten wire/particle reinforced Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix composites. Appl. Phys. Lett. 80, 1906 (2002).CrossRefGoogle Scholar
10Conner, R.D., Choi-Yim, H., and Johnson, W.L.: Mechanical properties of Zr57Nb5Al10Cu15.4Ni12.6 metallic glass matrix particulate composites. J. Mater. Res. 14, 3292 (1999).CrossRefGoogle Scholar
11Dandliker, R.B., Conner, R.D., and Johnson, W.L.: Melt infiltration casting of bulk metallic-glass matrix composites. J. Mater. Res. 13, 2896 (1998).Google Scholar
12Fan, C., Ott, R.T., and Hufnagel, T.C.: Metallic glass matrix composite with precipitated ductile reinforcement. Appl. Phys. Lett. 81, 1020 (2002).CrossRefGoogle Scholar
13Hirano, T., Kato, H., Matsuo, A., Kawamura, Y., and Inoue, A.: Synthesis and mechanical properties of Zr55Al10Ni5Cu30 bulk glass composites containing ZrC particles formed by the in-situ reaction. Mater. Trans., JIM 41, 1454 (2000).Google Scholar
14Hays, C.C., Kim, C.P., and Johnson, W.L.: Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901 (2000).CrossRefGoogle ScholarPubMed
15Kühn, U., Eckert, J., Mattern, N., and Schultz, L.: ZrNbCuNiAl bulk metallic glass matrix composites containing dendritic bcc phase precipitates. Appl. Phys. Lett. 80, 2478 (2002).Google Scholar
16Eckert, J., Kühn, U., Mattern, N., He, G., and Gebert, A.: Structural bulk metallic glasses with different length-scale of constituent phases. Intermetallics 10, 1183 (2002).Google Scholar
17Ma, H., Xu, J., and Ma, E.: Mg-based bulk metallic glass composites with plasticity and high strength. Appl. Phys. Lett. 83, 2793 (2003).CrossRefGoogle Scholar
18Xing, L.Q., Eckert, J., Löser, W., and Schultz, L.: High-strength materials produced by precipitation of icosahedral quasicrystals in bulk Zr–Ti–Cu–Ni–Al amorphous alloys. Appl. Phys. Lett. 74, 664 (1999).CrossRefGoogle Scholar
19Inoue, A., Zhang, T., Saida, J., Matsushita, M., Chen, M.W., and Sakurai, T.: Structural bulk metallic glasses with different length-scale of constituent phases. Mater. Trans., JIM 40, 1137 (1999).CrossRefGoogle Scholar
20Leonhard, A., Xing, L.Q., Heilmaier, M., Gebert, A., Eckert, J., and Schultz, L.: Effect of crystalline precipitations on the mechanical behavior of bulk glass forming Zr-based alloys. Nanostruct. Mater. 10, 805 (1998).CrossRefGoogle Scholar
21Fan, C., Takeuchi, A., and Inoue, A.: Preparation and mechanical properties of Zr-based bulk nanocrystalline alloys containing compound and amorphous phases. Mater. Trans., JIM 40, 41 (1999).Google Scholar
22Pekarskaya, E., Kim, C.P., and Johnson, W.L.: In situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite. J. Mater. Res. 16, 2513 (2001).Google Scholar
23He, G., Eckert, J., Löser, W., and Schultz, L.: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003).Google Scholar
24He, G., Eckert, J., and Löser, W.: In situ formed Ti–Cu–Ni–Sn–Ta nanostructure-dendrite composite with large plasticity. Acta Mater. 51, 5223 (2003).CrossRefGoogle Scholar
25He, G., Eckert, J., Löser, W., and Hagiwara, M.: Composition dependence of the microstructure and the mechanical properties of nano/ultrafine-structured Ti–Cu–Ni–Sn–Nb alloys. Acta Mater. 52, 3035 (2004).CrossRefGoogle Scholar
26Louzguine, D.V., Kato, H., and Inoue, A.: High-strength hypereutectic Ti–Fe–Co bulk alloy with good ductility. Philos. Mag. Lett. 84, 359 (2004).CrossRefGoogle Scholar
27Das, J., Löser, W., Kühn, U., Eckert, J., Roy, S.K., and Schultz, L.: High-strength Zr–Nb–(Cu,Ni,Al) composites with enhanced plasticity. Appl. Phys. Lett. 82, 4690 (2003).Google Scholar
28Das, J., Güth, A., Klauss, H-J., Mickel, C., Löser, W., Eckert, J., Roy, S.K., and Schultz, L.: Effect of casting conditions on microstructure and mechanical properties of high-strength Zr73.5Nb9Cu7Ni1Al9.5 in situ composites. Scripta Mater. 49, 1189 (2003).CrossRefGoogle Scholar
29Löser, W., Das, J., Güth, A., Klauß, H-J., Mickel, C., Kühn, U., Eckert, J., Roy, S.K., and Schultz, L.: Effect of casting conditions on dendrite-amorphous/nanocrystalline Zr–Nb–Cu–Ni–Al in situ composites. Intermetallics 12, 1153 (2004).Google Scholar
30Sanders, P.G., Eastman, J.A., and Weertman, J.R.: Elastic and tensile behavior of nanocrystalline copper and palladium. Acta Mater. 45, 4019 (1997).CrossRefGoogle Scholar
31Wang, Y.M., Chen, M.W., Zhou, F.H., and Ma, E.: High tensile ductility in a nanostructured metal. Nature 419, 912 (2002).Google Scholar
32Schroers, J. and Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93, 255506 (2004).Google Scholar
33Sung, D.S., Kwon, O.J., Fleury, E., Kim, K.B., Lee, J.C., Kim, D.H., and Kim, Y.C.: Enhancement of the glass forming ability of Cu–Zr–Al alloys by Ag addition. Metals Mater. Int. 10, 575 (2004).CrossRefGoogle Scholar
34Das, J., Tang, M.B., Kim, K.B., Theissmann, R., Baier, F., Wang, W.H., and Eckert, J.: “Work-hardenable” ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501 (2005).CrossRefGoogle ScholarPubMed
35Saida, J., Setyawan, A.D.H., Kato, H., and Inoue, A.: Nanoscale multistep shear band formation by deformation-induced nanocrystallization in Zr–Al–Ni–Pd bulk metallic glass. Appl. Phys. Lett. 87, 151907 (2005).Google Scholar
36Kim, K.B., Das, J., Baier, F., Tang, M.B., Wang, W.H., and Eckert, J.: Heterogeneity of a Cu47.5Zr47.5Al5 bulk metallic glass. Appl. Phys. Lett. 88, 051911 (2006).Google Scholar
37Venkataraman, S., Stoica, M., Scudino, S., Gemming, T., Mickel, C., Kunz, U., Kim, K.B., Schultz, L., and Eckert, J.: Revisiting the Cu47Ti33Zr11Ni8Si1 glass-forming alloy. Scripta Mater. 54, 835 (2006).Google Scholar
38Koval, Y.N., Firstov, G.S., and Kotko, A.V.: Martensitic-transformation and shape memory effect in ZrCu intermetallic compound. Scripta Metall. Mater. 27, 1611 (1992).Google Scholar
39Liu, Z.Y., Aindow, M., Hriljac, J.A., Jones, I.P., and Harris, I.R.: Phase transformations in equiatomic ZrCu alloy. Journal of Metastable and Nanocrystalline Materials 360–362, 223 (2001).CrossRefGoogle Scholar
40Sun, Y.F., Wei, B.C., Wang, Y.R., Li, W.H., Cheung, T.L., and Shek, C.H.: Plasticity-improved Zr–Cu–Al bulk metallic glass matrix composites containing martensite phase. Appl. Phys. Lett. 87, 051905 (2005).CrossRefGoogle Scholar
41Kündig, A.A., Ohnuma, M., Ping, D.H., Ohkubo, T., and Hono, K.: In situ formed two-phase metallic glass with surface fractal microstructure. Acta Mater. 52, 2441 (2004).Google Scholar
42Srivastava, R.M., Eckert, J., Löser, W., Dhindaw, B.K., and Schultz, L.: Cooling rate evaluation for bulk amorphous alloys from eutectic microstructures in casting processes. Mater. Trans., JIM 43, 1670 (2002).Google Scholar
43Lee, M.C. and Johnson, W.L.: Two-dimensional phase separation on the spherical surface of the metallics-glass Au55Pb22.5Sb22.5. Appl. Phys. Lett. 41, 1054 (1982).Google Scholar
44Yu, P., Bai, H.Y., Tang, M.B., and Wang, W.L.: Excellent glass-forming ability in simple Cu50Zr50-based alloys. J. Non-Cryst. Solids 351, 1328 (2005).CrossRefGoogle Scholar
45Sarkar, S., Ren, X.B., and Otsuka, K.: Evidence for strain glass in the ferroelastic-martensitic system Ti50−xNi50+x. Phys. Rev. Lett. 95, 205702 (2005).CrossRefGoogle Scholar