Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-08T23:05:41.540Z Has data issue: false hasContentIssue false

Multicrystalline silicon material: Effects of classical and rapid thermal processes

Published online by Cambridge University Press:  31 January 2011

J. C. Muller
Affiliation:
CNRS, Laboratoire de Physique et Applications des Semiconductors (UPR292), BP 20, 67037 Strasbourg Cedex 2, France
S. Martinuzzi
Affiliation:
Laboratoire de Photoélectricité des Semiconducteurs (LPSC), Université Aix-Marseille, 13397 Marseille Cedex 13, France
Get access

Abstract

For photovoltaic applications silicon is still the predominant material. Besides monocrystalline Czochralski wafers (Cz-Si), multicrystalline sheets (mc-Si) play an important role in terrestrial power applications (almost 50%). Large mc-Si ingots (up to 250 kg) are now produced in large scale by the industry using various directional solidification methods in appropriate crucibles (or molds). However, if the crystallographic properties are now quite satisfactory (columnar structure with large grains of more than 1 cm2, dislocations and intragrains defects), multicrystalline silicon contains larger quantities of impurities than single crystalline silicon which can have detrimental effects on the bulk minority carrier diffusion length (Ln,p). These impurities, including metals as well as high concentrations of carbon and/or oxygen, can degrade the photovoltaic properties of solar cells. Thermal treatments such as gettering, performed in a classical or rapid thermal furnace, studied separately or in conjunction with the doping steps can limit or avoid the degradation of the bulk diffusion length, but its efficiency is strongly dependent on the presence of these impurities in Si.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Authier, B. H., German Patent (DOS) No. 25 0883 (1975); H. Fischer, Proc. 1st EC PV SEC, Luxembourg (1977), p. 52.Google Scholar
2.Storti, G. M., Proc. 15th IEEE PVSC, Kissimmee, FL (1981), p. 442.Google Scholar
3.Schmid, E. and Khattak, C. P., Proc. 5th EC PV SEC, Athens (1983), p. 1019.Google Scholar
4.Fall, J., Guignot, D., and Goeffron, L., Proc. 7th EC PV SEC, Sevilla, Spain (1986), p. 754.Google Scholar
5.Ciszek, T. E., Schwuttke, G. H., and Young, K. H., J. Cryst. Growth 46, 527 (1979).CrossRefGoogle Scholar
6.Saito, T., Shimura, A., and Ichikawa, S., Proc. 15th IEEE PVSC, Kissimmee, FL (1981), p. 576.Google Scholar
7.Margadonna, D., Ferrazza, F., and Peruzzi, R., Proc. 10th EC PV SEC, Lisbon (1991), p. 678.Google Scholar
8.Dorrity, I. A., Garrard, B. J., and Hukin, D. A., Proc. 10th EC PV SEC, Lisbon (1991), p. 317.Google Scholar
9.Koch, W., Krumble, W., Lange, H., Schmidt, W., Schomann, F., and Wahl, G., Proc. 12th EC PV SEC, Amsterdam (1994), p. 797.Google Scholar
10.Lesk, A., Baghdadi, A., Gurtier, R. W., Ellis, R. J., Wise, J. A., and Coleman, M. G., Proc. 12th IEEE PVSC, Baton Rouge, LA (1976), p. 173.Google Scholar
11.Belouet, C., Brissot, J. J., Martres, R., and Ngo. Tich. Phuoc, Proc. 1st EC PV SEC, Luxembourg (1977), p. 164.Google Scholar
12.Ravi, K. V., Wald, F. V., Gonsiorawski, R., Rao, H., Garone, L. C., Ho, J. C. T., Bell, R. O., 12th IEEE PVSC Baton Rouge (1976) p. 182.Google Scholar
13.Sarti, D., Le, Q. N., Goaer, G., and Ferry, D., Proc. 13th EC PV SEC, Nice, France (1995), p. 25.Google Scholar
14.Goda, S., Moritani, T., Hatanaka, Y., Shimizu, H., and Hide, I., Proc. First WCPEC, Hawaii (1994), p. 1227.Google Scholar
15.Ciszek, T. F., J. Electrochem. Soc. 132, 963 (1985).CrossRefGoogle Scholar
16.Kaneko, K., Misawa, T., and Tabata, K., Proc. 21st IEEE PVSC, Kissimmee, FL (1981), p. 674.Google Scholar
17.Kanaka, K., Kawamura, R., and Misawa, T., Proc. First WCPEC, Hawaii (1994), p. 30.Google Scholar
18.Perichaud, I., Dour, G., Durand, F., Sarti, D., Goaer, G., Le, Q. N., Floret, F., and Martinuzzi, S., Proc. 13th EC PV SEC, Nice, France (1995), p. 1377.Google Scholar
19.Hukin, D. A., Proc. 4th PVSEC, Sydney, Australia (1989), p. 719.Google Scholar
20.Inoue, N., Wilsen, C. W., and Jones, K. A., Solar Cells 3, 35 (1981).CrossRefGoogle Scholar
21.Sopori, B. L., Proc. 20th IEEE PVSC, Las Vegas (1988), p. 591.Google Scholar
22.Ghitani, H. El and Martinuzzi, S., J. Appl. Phys. 66, 1717 (1989).CrossRefGoogle Scholar
23.Ghitani, H. El and Martinuzzi, S., J. Appl. Phys. 66, 1723 (1989).CrossRefGoogle Scholar
24.Martinuzzi, S. and Périchaud, I., Mater. Sci. Forum 143–147, 1629 (1994).Google Scholar
25.Shimura, F., Semiconductor Silicon Crystal Technology (Academic Press, San Diego, 1988), p. 344.Google Scholar
26.Schröter, W., Seibt, M., and Gilles, D., Mater. Sci. Technol. 4, 540 (1992).Google Scholar
27.Ourmazd, A. and Schröter, W., Appl. Phys. Lett. 45, 781 (1984).Google Scholar
28.Stojadinovic, S. D., Phys. Status Solidi (a) 54, K5 (1979).CrossRefGoogle Scholar
29.Tamura, M., Philos. Mag. 35, 663 (1977).Google Scholar
30.Gilles, D., Solid State Phenomena 32, 57 (1993).CrossRefGoogle Scholar
31.Kang, J. S. and Schroder, D. K., J. Appl. Phys. 65, 2974 (1989).CrossRefGoogle Scholar
32.Sundaresan, R., Burk, D. E., and Fossum, J. G., J. Appl. Phys. 55, 1162 (1984).CrossRefGoogle Scholar
33.Orr, W. A. and Arienzo, M., IEEE Trans. Electron. Devices 29, 1151 (1982).CrossRefGoogle Scholar
34.Verhoef, L. A. and Roorda, S., Proc. 20th IEEE PVSC, Las Vegas (1988), p. 1551.Google Scholar
35.Pore, O., Pasquinelli, M., Martinuzzi, S., and Périchaud, I., Proc. 11th EC PV SEC, Montreux (1992), p. 1053.Google Scholar
36.Thompson, R. D. and Tu, K. N., Appl. Phys. Lett. 41, 440 (1982).CrossRefGoogle Scholar
37.Zurletto, C. and Martinuzzi, S., Proc. 22th IEEE PVSC, Las Vegas (1991), p. 229.Google Scholar
38.Martinuzzi, S., Pore, O., Pasquinelli, M., and Périchaud, I., J. de Phys. III 5, 1337 (1995).Google Scholar
39.Apel, M., Hanke, J., Schindler, R., and Schröter, W., J. Appl. Phys. 76, 4432 (1994).Google Scholar
40.Périchaud, I. and Martinuzzi, S., Proc. 22nd IEEE PVSC, Las Vegas (1991), p. 877.Google Scholar
41.Périchaud, I. and Martinuzzi, S., J. de Phys. III 2, 313 (1992).Google Scholar
42.Périchaud, I., Floret, F., Stemmer, M., and Martinuzzi, S., Solid State Phenomena 32, 77 (1993).CrossRefGoogle Scholar
43.Sopori, B., Jastrzebski, L., Tan, T., and Narayanan, S., Proc. 12th EC PV SEC, Amsterdam (1994), p. 1003.Google Scholar
44.Nam, Le Quang, Rodot, M., Ghannam, M., Sarti, D., Périchaud, I., and Martinuzzi, S., Int. J. Solar Energy 11, 273 (1992).CrossRefGoogle Scholar
45.Rohatgi, A., Sana, P., Ramanachalem, M. S., Salmi, J., and Carter, W. B., Proc. 23rd IEEE PV SEC, Louisville (1993), p. 52.Google Scholar
46.Martinuzzi, S., Périchaud, I., and Stemmer, M., Solid State Phenomena 37, 361 (1994).CrossRefGoogle Scholar
47.Pasquinelli, M., Martinuzzi, S., Natoli, J. Y., and Floret, F., Proc. 22nd IEEE PVSC, Las Vegas (1991), p. 1035.Google Scholar
48.Rohatgi, A., Sana, P., and Salami, J., Proc. 11th EC PV SEC, Montreux (1992), p. 159.Google Scholar
49.Verhoef, L. A., Michiels, P. P., Roorda, S., Sinke, R., and Van Zolingen, R. J., Mater. Sci. Eng. B7, 49 (1990).CrossRefGoogle Scholar
50.Hartiti, B., Slaoui, A., Muller, J. C., and Siffert, P. in Defect Engineering in Semiconductor Growth, Processing and Device Technology, edited by Ashok, S., Chevallier, J., Sumino, K., and Weber, E. (Mater. Res. Soc. Symp. Proc. 262, Pittsburgh, PA, 1992), p. 987.Google Scholar
51.Muller, J. C., Adekoya, W. O., Grob, A., Siffert, P., Correra, L., Rizzoli, R., and Pedulli, L., Proc. 6th EC PV SEC, London (1985), p. 985.Google Scholar
52.Joly, J. F., Chaussemy, G., Barbier, D., and Laugier, A., 18th IEEE PVSC, Las Vegas (1985), p. 1756.Google Scholar
53.Eichhammer, W., Vu-Thuong-Quat, , and Siffert, P., J. Appl. Phys. 66, 3857 (1989).CrossRefGoogle Scholar
54.Eichhammer, W., Hage-Ali, M., Stuck, R., and Siffert, P., Appl. Phys. A50, 405 (1989).Google Scholar
55.Hartiti, B., Slaoui, A., Muller, J. C., and Siffert, P., Mater. Sci. Eng. B10, L11 (1991).CrossRefGoogle Scholar
56.Davis, J. R., Jr., Rohatgi, A., Hopkins, R. H., Blais, P. D., Rai-Choudhury, P. R., McCormick, J. R., and Mollenkopf, H. C., IEEE Trans. Electron Devices 27, 677 (1980).CrossRefGoogle Scholar
57.Weber, E., in Impurity Diffusion and Gettering in Silicon, edited by Fair, R. B., Pearce, C. W., and Washburn, J. (Mater. Res. Soc. Symp. Proc. 36, Pittsburgh, PA, 1985), p. 3.Google Scholar
58.Sparks, D. R., Chapman, R. G., and Alvi, N. S., Appl. Phys. Lett. 49, 525 (1986).CrossRefGoogle Scholar
59.Zagozdzun, W., J. Electrochem. Soc. 135, 2065 (1988).CrossRefGoogle Scholar
60.Hartiti, B., Quat, V. T., Eichhammer, W., Muller, J. C., and Siffert, P., Appl. Phys. Lett. 55, 873 (1989).CrossRefGoogle Scholar
61.Stolwijk, N. A., Hölzl, H., Frank, W., and Mehrer, H., Phys. Status Solidi A104, 225 (1987).CrossRefGoogle Scholar
62.Hartiti, B., Slaoui, A., Muller, J. C., Stuck, R., and Siffert, P., J. Appl. Phys. 71, 5474 (1992).CrossRefGoogle Scholar
63.Hartiti, B., Slaoui, A., Muller, J. C., and Siffert, P., Appl. Phys. Lett. 63 (1993).CrossRefGoogle Scholar
64. ASTM Standard F391–78 Annual Book of ASTM Standards (1979).Google Scholar
65.Hartiti, B., Slaoui, A., Muller, J. C., Siffert, P., Schindler, R., Reis, I., Wagner, B., and Eyer, A., Proc. 23rd IEEE PV SEC, Louisville (1993), p. 224.Google Scholar
66.Mahfoud, K., Loghmarti, M., Muller, J. C., and Siffert, P., Mater. Sci. Eng. B36, 63 (1995).Google Scholar
67.Mahfoud, K., Loghmarti, M., Muller, J. C., and Siffert, P., J. Phys. III 5, 1345 (1995).Google Scholar
68.Pizzini, S., Sandrinelli, A., Beghi, M., Narducci, D., Allegretti, F., Torchio, S., Fabbri, G., Ottavini, G. P., Demartin, F., and Fusi, A., J. Electrochem. Soc., Solid State Sci. Technol. 135, 155 (1988).Google Scholar
69.Graff, K., Hilgard, J., and Neubrand, K., in Semiconductor Silicon (1977), edited by Huff, H. R. and Sirtl, E. (The Electrochemical Society Soft bound Proceeding Series, 1977), p. 575.Google Scholar
70.Muller, J. C., Hussian, E., Siffert, P., and Sarti, D., Proc. 9th EC PV SEC, Freiburg, Germany (1989), p. 407.Google Scholar
71.Sopori, B., Jones, K., Dung, X., Matson, R., Al-Jassin, M., Tsuo, S., Doolittle, A., and Rohatgi, A., Proc. 22nd IEEE PVSC, Las Vegas (1991), p. 833.Google Scholar
72.Sapori, S., Deng, X., Narayanan, S., and Roncin, S., Proc. 11th EC PV SEC, Montreux(1992), p. 246.Google Scholar
73.Muller, J. C., Hartiti, B., Hussian, E., Schunck, J. P., Siffert, P., and Sarti, D., Proc. 22nd IEEE PVSC, Las Vegas (1991), p. 883.Google Scholar
74.Sivoththaman, S., Rodot, M., Muller, J. C., Hartiti, B., Ghannam, M., Elgamel, H. E., Nijs, J., and Sarti, D., Appl. Phys. Lett. 62, 3172 (1993).CrossRefGoogle Scholar
75.Coppye, J., Szlufcik, J., Elgamel, H., Ghannam, M., De Schepper, P., Nijs, J., and Mertens, R., Proc. 22nd IEEE PVSC, Las Vegas (1991), p. 873.Google Scholar
76.Narayanan, S., Wenham, S. R., and Green, M. A., Proc. 4th PV SEC, Sidney, Australia (1989), p. 111.Google Scholar
77.Nakoya, H., Nishida, M., Takeda, Y., Moriuchi, S., Tonegawa, T., Machinda, T., and Nunoi, T., 7th PV SEC, Nagoya, Japan (1993), p. 91.Google Scholar
78.Shirasawa, K., Takahashi, H., Inomata, Y., Fukui, K., Okache, K., Takayama, M., and Watanabe, H., Proc. 12th EC PV SEC, Amsterdam (1994), p. 757.Google Scholar
79.Sivoththaman, S., Hartiti, B., Nijs, J., Barhdadi, A., Rodot, M., Muller, J. C., Laurey, W., and Sarti, D., Proc. 12th EC PV SEC, Amsterdam (1994), p. 47.Google Scholar
80.Green, M. A., Wang, A., Zheng, G. F., Zhang, Z., Wenham, S. R., Zhao, J., Shi, Z., and Honsberg, C. B., Proc. 12th EC PVSEC, Amsterdam (1994), p. 776.Google Scholar