Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-09T00:54:04.224Z Has data issue: false hasContentIssue false

Nano-scratch Behavior of a Bulk Zr–10Al–5Ti–17.9Cu–14.6Ni Amorphous Alloy

Published online by Cambridge University Press:  31 January 2011

J. G. Wang
Affiliation:
Chemistry and Materials Science, Lawrence Livermore National Laboratory, P.O. Box 808, L-350, Livermore, California 94551–9900
B. W. Choi
Affiliation:
Chemistry and Materials Science, Lawrence Livermore National Laboratory, P.O. Box 808, L-350, Livermore, California 94551–9900
T. G. Nieh
Affiliation:
Chemistry and Materials Science, Lawrence Livermore National Laboratory, P.O. Box 808, L-350, Livermore, California 94551–9900
C. T. Liu
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831–6376
Get access

Abstract

The tribological behavior of a Zr–10Al–5Ti–17.9Cu–14.6Ni (at.%) bulk amorphous alloy, in both the as-cast and annealed states, was investigated using nano-scratch tests, including ramping load scratch and multiple sliding wear techniques. The crystallization sequence of the alloy was also characterized. Mechanical properties, such as Young's modulus, hardness, friction coefficient, and tribological wear were measured. These properties were found to vary with microstructure. In general, an increase in annealing temperature results in an increase in hardness, which in turn produces a decrease in friction coefficient but an increase in wear resistance. Samples having a structure consisting of supercooled liquid matrix with dispersed nanocrystalline particles exhibit the best wear performance.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Inoue, A., Zhang, T., and Masumoto, T., Mater. Trans., JIM 30, 965 (1989).CrossRefGoogle Scholar
2.Inoue, A., Yamaguchi, H., Zhang, T., and Masumoto, T., Mater. Trans., JIM 31, 104 (1990).CrossRefGoogle Scholar
3.Inoue, A., Ohtera, K., Kita, K., and Masumoto, T., Jpn. J. Appl. Phys. 27, L2248 (1988).CrossRefGoogle Scholar
4.Kim, S.G., Inoue, A., and Masumoto, T., Mater. Trans., JIM 31, 929 (1990).CrossRefGoogle Scholar
5.Inoue, A., Zhang, T., and Masumoto, T., Mater. Trans., JIM 31, 177 (1990).CrossRefGoogle Scholar
6.Zhang, T., Inoue, A., and Masumoto, T., Mater. Trans., JIM 32, 1005 (1991).CrossRefGoogle Scholar
7.Inoue, A., Shibata, T., and Zhang, T., Mater. Trans., JIM 36, 1420 (1995).CrossRefGoogle Scholar
8.Inoue, A., Nishiyama, N., Amiya, K., Zhang, T., and Masumoto, T., Mater. Lett. 19, 131 (1994).CrossRefGoogle Scholar
9.Lin, X.H. and Johnson, W.L., J. Appl. Phys. 78, 6514 (1995).CrossRefGoogle Scholar
10.Peker, A. and Johnson, W.L., Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
11.Inoue, A., Nishiyama, N., and Matsuda, T., Mater. Trans., JIM 37, 181 (1996).CrossRefGoogle Scholar
12.Inoue, A. and Gook, J.S., Mater. Trans., JIM 36, 1180 (1995).CrossRefGoogle Scholar
13.Inoue, A. and Gook, J.S., Mater. Trans. JIM 36 1282 (1995).CrossRefGoogle Scholar
14.Inoue, A., Mater. Trans., JIM 36, 866 (1995).CrossRefGoogle Scholar
15.Inoue, A., Mater. Sci. Eng. A 226–228, 357 (1997).CrossRefGoogle Scholar
16.Inoue, A., Takeuchi, A., and Zhang, T., Metall. Mater. Trans. A 29, 1779 (1998).CrossRefGoogle Scholar
17.Sudarsan, U., Chattopadhyay, K., and Kishore, , in Proceedings of the Fifth International Conference on Rapidly Quenched Metals, edited by Steed, S. and Warlimont, H. (North-Holland, Amsterdam, The Netherlands, 1985), p. 1439.Google Scholar
18.Greer, A.L., Science 267, 1947 (1995).CrossRefGoogle Scholar
19.Ozawa, K., Walkasugi, H., and Tanaka, K., IEEE Trans. Magn. 20, 425 (1984).CrossRefGoogle Scholar
20.Kohmoto, O., Ohya, K., and Ojima, T., IEEE Trans. Magn. 25, 4490 (1989).CrossRefGoogle Scholar
21.Morris, D.G., in Proceedings of the Fifth International Conference on Rapidly Quenched Metals, edited by Steed, S. and Warlimont, H. (North-Holland, Amsterdam, The Netherlands, 1985), p. 1775.Google Scholar
22.Dolezal, N. and Hausch, G., in Proceedings of the Fifth International Conference on Rapidly Quenched Metals, edited by Steed, S. and Warlimont, H. (North-Holland, Amsterdam, The Netherlands, 1985), p. 1767.Google Scholar
23.Atzeni, C., Pes, M., Sanna, U., Corrias, A., Paschina, G., and Zedda, D., Adv. Perform. Mater. 1, 243 (1994).CrossRefGoogle Scholar
24.Rutherford, K.L. and Hutchings, I.M., J. Test. Eval. 25, 250 (1997).CrossRefGoogle Scholar
25.Wong, C.J. and Li, J.C.M, Wear 98, 45 (1984).CrossRefGoogle Scholar
26.Anis, M., Rainforth, W.M., and Davies, H.A., Wear 172, 135 (1994).CrossRefGoogle Scholar
27.Gloriant, T. and Greer, A.L., Nanostruct. Mater. 10, 389 (1998).CrossRefGoogle Scholar
28.Liu, C.T., Heatherly, L., Easton, D.S., Carmichael, C.A., Schneibel, J.H., Chen, C.H., Wright, J.L., Yoo, M.H., Horton, J.A., and Inoue, A., Metall. Mater. Trans. A 29, 1811 (1998).CrossRefGoogle Scholar
29.Lucas, B.N., Oliver, W.C., Pharr, G.M., and Loubet, J-L., in Thin Films: Stresses and Mechanical Properties VI, edited by Gerberich, W.W., Gao, H., Sundgren, J-E., and Baker, S.P. (Materials Research Society, Pittsburgh, PA, 1997), p. 233.Google Scholar
30.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
31.Wang, J.G., Choi, B.W., Nieh, T.G., and Liu, C.T., J. Mater. Res. 15, 798 (2000).CrossRefGoogle Scholar
32.Bhushan, B., Gupta, B.K., and Azarian, M.H., Wear 181–183, 743 (1995).CrossRefGoogle Scholar
33.Gupta, B.K. and Bhushan, B., Wear 190, 110 (1995).CrossRefGoogle Scholar
34.Deng, H., Scharf, T.W., and Barnard, J.A., IEEE Trans. Magn. 33, 3151 (1997).CrossRefGoogle Scholar
35.Gaskell, P.H., J. Non-Cryst. Solids 32, 207 (1979).CrossRefGoogle Scholar
36.Larsen-Basse, J., in Friction, Lubrication, and Wear Technology, edited by Blau, P.J. (ASM International, The Materials Information Society, Materials Park, OH, 1995), p. 24.Google Scholar
37.Amuzu, J.K.A, J. Phys. D: Appl. Phys. 13, L127 (1980).CrossRefGoogle Scholar
38.Lee, D-H. and Evetts, J.E., Acta Metall. 32(7), 1035 (1984).CrossRefGoogle Scholar
39.Girerd, G., Guiraldenq, P., and Du, N., Wear 102, 233 (1985).CrossRefGoogle Scholar
40.Whang, S.H. and Giessen, B.C., in Rapidly Solidified Amorphous and Crystalline Alloys, edited by Kear, B.H., Giessen, B.C., and Cohen, M. (New York, North-Holland, 1982), p. 301.Google Scholar
41.Klinger, R. and Feller, H.G., Wear 86, 287 (1983).CrossRefGoogle Scholar
42.Moreton, R. and Lancaster, J.K., J. Mater. Sci. Lett 4, 133 (1985).CrossRefGoogle Scholar
43.Ohtera, K., Inoue, A., Terabayashi, T., Nagahama, H., and Masumoto, T., Mater. Trans., JIM 33, 775 (1992).CrossRefGoogle Scholar
44.Kim, Y.H., Inoue, A., and Masumoto, T., Mater. Trans., JIM 31, 747 (1990).CrossRefGoogle Scholar
45.Fecht, H.J., Philos. Mag. B 76, 495 (1997).CrossRefGoogle Scholar
46.Inoue, A., Sci. Rep. RITU, A42, 1 (1996).Google Scholar
47.Kawamura, Y., Kato, H., Inoue, A., and Masumoto, T., Appl. Phys. Lett. 67, 2008 (1995).CrossRefGoogle Scholar
48.Sundgren, J-E. and Hentzell, H.T.G, J. Vac. Sci. Technol., A 4, 2259 (1986).CrossRefGoogle Scholar
49.Chou, T.C., Nieh, T.G., McAdams, S.D., Pharr, G.M., and Oliver, W.C., J. Mater. Res. 7, 2774 (1992).CrossRefGoogle Scholar
50.Pharr, G.M., Rice University (private communication, 1998).Google Scholar
51.Fan, C. and Inoue, A., Mater. Trans., JIM 38, 1040 (1997).CrossRefGoogle Scholar
52.Fan, C., Takeuchi, A., and Inoue, A., Mater. Trans., JIM 40, 42 (1999).CrossRefGoogle Scholar
53.Kishore, , Sudarsan, U., Chandran, N., and Chattopadhyay, K., Acta Metall. 35, 1463 (1987).CrossRefGoogle Scholar