Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-07T13:57:51.875Z Has data issue: false hasContentIssue false

Nucleation and propagation of cracks at grain boundaries in zinc bicrystals

Published online by Cambridge University Press:  31 January 2011

H. A. Schmitz
Affiliation:
Department of Materials Science and Engineering, State University of New York at Stony Brook, Stony Brook, New York 11794
D. Dew-Hughes
Affiliation:
Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ. United Kingdom
J. C. Bilello
Affiliation:
Department of Mechanical Engineering, California State University, Fullerton, California 92634
Get access

Abstract

A study has been made of fatigue and fracture in zinc bicrystals. It is shown that cleavage cracks are nucleated, both under tension and as a result of fatigue, in regions of multiple slip adjacent to grain boundaries at stresses below those for crack nucleation in single crystals. The nature of crack penetration through the boundary is observed as a function of orientation across the boundary. Low angle tilt boundaries are barriers to crack propagation, increasing effective surface energies for crack propagation by 1.6–2 times. Twist boundaries, due to the tearing that accompanies penetration, can result in a twelvefold increase in effective surface energy. Nonbasal cleavage is associated with a twinning mechanism, and an even higher surface energy is required to propagate a crack into a crystal oriented for this type of cleavage. The results carry the implication that, in the absence of surface defects, fatigue, failure in polycrystalline zinc is nucleated at the first internal grain boundary and not at the surface.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Miller, K.J. and Ibrahim, M.F. E., Fatigue Eng. Mater. Struct. 4, 263 (1981).CrossRefGoogle Scholar
2Messmer, C., Bilello, J. C., and Dew-Hughes, D., Metal Science 15, 79 (1981).CrossRefGoogle Scholar
3Dew-Hughes, D., Messmer, C., and Bilello, J.C., Mater. Lett. 1, 37 (1982).Google Scholar
4Messmer, C., Dew-Hughes, D., and Bilello, J. C., Philos. Mag. A47, 635 (1983).Google Scholar
5Bilello, J. C., Dew-Hughes, D., and Pucino, A., J. Appl. Phys. 54, 1821 (1983).CrossRefGoogle Scholar
6Schmitz, H.A., Bilello, J.C., and Rek, Z., Mater. Sci and Eng. 81, 293 (1986).CrossRefGoogle Scholar
7Hmelo, A. B., Bilello, J. C., Davis, S. T., and Bowen, D. K., Mater. Lett. 2, 6 (1983).Google Scholar
8Hmelo, A.B., Bilello, J.C., Davis, S.T., and Bowen, D. K., in Applications of X-ray Topographic Methods to Materials Science, edited by Weissman, S., Balibar, F., and Petroff, J-F. (Plenum, New York, 1984), p. 343.Google Scholar
9G'Sell, C. and Champier, G., Philos. Mag. A41, 917 (1980).CrossRefGoogle Scholar
10Michot, G. and George, A., Scripta Metall. 16, 519 (1982).CrossRefGoogle Scholar
11Michot, G., George, A., and Champier, G., in Applications of X-ray Topography to Materials Science, edited by Weissman, S., Balibar, F., and Petroff, J-F. (Plenum, New York, 1984), p. 325.Google Scholar
12George, A., Jaques, A., Michot, G., and Michel, J-P., in Applications of X-ray Topography to Materials Science, edited by Weissman, S., Balibar, F., and Petroff, J-F. (Plenum, New York, 1984), p. 377.Google Scholar
13Chalmers, B., Proc. Roy. Soc. A162, 120 (1937).Google Scholar
14Clark, R. and Chalmers, B., Acta Metall. 2, 80 (1954).CrossRefGoogle Scholar
15Aust, K. T. and Chen, N. K., Acta Metall. 2, 426 (1954).Google Scholar
16Livingston, J. D. and Chalmers, B., Acta Metall. 5, 322 (1957).CrossRefGoogle Scholar
17Fleischer, R. L. and Backofen, W. A., Trans. AIME 218, 243 (1960).Google Scholar
18Miura, S., Hamashima, K., and Aust, K.T., Acta Metall. 28, 1591 (1980).CrossRefGoogle Scholar
19Rey, C. and Zaoui, A., Acta Metall. 28, 687 (1980).CrossRefGoogle Scholar
20Rey, C. and Zaoui, A., Acta Metall. 30, 523 (1982).Google Scholar
21Chuang, Y.D. and Margolin, H., Metall. Trans. 4, 1905 (1973).CrossRefGoogle Scholar
22Lee, T.D. and Margolin, H., Metall. Trans. A 8A, 145, 157 (1977).CrossRefGoogle Scholar
23Hook, R. E. and Hirth, J. P., Acta Metall. 15, 535, 1099 (1967).Google Scholar
24Mote, J. D. and Dorn, J. E., Trans. AIME 218, 491 (1960).Google Scholar
25Hauser, J. J. and Chalmers, B., Acta Metall. 9, 802 (1961).Google Scholar
26Kawada, T., Proc. 1st World Met. Congress (1951), ASM, p. 591; J. Phys. Soc. Jpn. 6, 362 (1951).Google Scholar
27Gilman, J. J., Acta Metall. 1, 426 (1953).CrossRefGoogle Scholar
28Craig, G.B. and Chalmers, B., Can. J. Phys. 35, 38 (1957).CrossRefGoogle Scholar
29Gilman, J. J., Trans. AIME 212, 783 (1958).Google Scholar
30Fujita, H., Toyoda, K., Mori, T., Tabata, T., Ono, T., and Takeda, T., Trans. Jpn. Inst. Met. 24, 195 (1983).CrossRefGoogle Scholar
31Deruyttere, A. and Greenough, G.B., J. Inst. Met. 84, 337 (1955-1956).Google Scholar
32Bell, R.L. and Cahn, R. W., Proc. Roy. Soc. A239, 494 (1957); J. Inst. Met. 86, 433 (1957-58).Google Scholar
33Burr, D. J. and Thompson, N., Philos. Mag. 7, 1773 (1962).CrossRefGoogle Scholar
34Burr, D. J. and Thompson, N., Philos. Mag. 12, 229 (1965).Google Scholar
35Wielke, B. and Stangler, F., Philos. Mag. 22, 155 (1970).Google Scholar
36Liu, J.M. and Shen, B. W., Acta Metall. 30, 1197 (1982).CrossRefGoogle Scholar
37McCammon, R. D. and Rosenberg, H.M., Proc. Roy. Soc. A242, 203 (1957).Google Scholar
38Fegredo, D.M. and Greenough, G.B., J. Inst. Met. 87, 1 (1958-1959).Google Scholar
39Alden, T. H., Acta Metall. 10, 653 (1962).Google Scholar
40Broom, T. and Summerton, J. M., Philos. Mag. 8, 1847 (1963).Google Scholar
41Chikwembani, S. and Weertman, J., Scripta Metall. 19, 1499 (1985).Google Scholar
42Atagi, K., Inoko, F., and Mima, G., J. Jpn. Inst. Met. 49, 723 (1985).CrossRefGoogle Scholar
43Lim, L. C. and Raj, R., Scripta Metall. 20, 539 (1986).Google Scholar
44Gilman, J. J. and DeCarlo, V. J., TMS-AIME 206, 436 (1956).Google Scholar
45Bilello, J.C., Chen, H., Hmelo, A.B., Liu, J.M., Birnbaum, H.K., Herley, P.J., and Green, R.E. Jr., Nucl. Instrum. Methods 215, 291 (1983).CrossRefGoogle Scholar
46Bilello, J. C., Schmitz, H. A., and Dew-Hughes, D., J. Appl. Phys. 65, 2282 (1989).CrossRefGoogle Scholar
47Gell, M. and Smith, E., Acta Metall. 15, 253 (1967).CrossRefGoogle Scholar
48Rosenbaum, H.S., Acta Metall. 9, 742 (1961).CrossRefGoogle Scholar
49Koda, S. and Yoshinaga, H., J. Inst. Met. 97, 125 (1969).Google Scholar
50Ewalds, H.L. and Wanhill, R. J.H., Fracture Mechanics (Edward Arnold, London, 1984), p. 40.Google Scholar