Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-02T11:15:49.728Z Has data issue: false hasContentIssue false

Optimum temperature range for the proton dynamics in H-doped BaZrO3:Yb dense ceramics—a neutron scattering study

Published online by Cambridge University Press:  13 June 2012

Aneta Slodczyk*
Affiliation:
LADIR, UMR 7075, CNRS, Université P. et M. Curie, 75252 Paris Cedex 05, France
Philippe Colomban
Affiliation:
LADIR, UMR 7075, CNRS, Université P. et M. Curie, 75252 Paris Cedex 05, France
Daniel Lamago
Affiliation:
Laboratoire Léon Brillouin, CNRS-CEA Saclay, 91119 Gif-sur-Yvette, France; and Karlsruhe Institut of Technology, Institut für Festkörperphysik, 76021 Karlsruhe, Germany
Gilles André
Affiliation:
Laboratoire Léon Brillouin, CNRS-CEA Saclay, 91119 Gif-sur-Yvette, France
Oumaya Zaafrani
Affiliation:
LADIR, UMR 7075, CNRS, Université P. et M. Curie, 75252 Paris Cedex 05, France
Olivier Lacroix
Affiliation:
AREVA NP & Université Montpellier II, 34095 Montpellier, France
Abdelkader Sirat
Affiliation:
AREVA NP & Université Montpellier II, 34095 Montpellier, France
Frédéric Grasset
Affiliation:
AREVA NP & Université Montpellier II, 34095 Montpellier, France
Béatrice Sala
Affiliation:
AREVA NP & Université Montpellier II, 34095 Montpellier, France
*
a)Address all correspondence to this author. e-mail: aneta.slodczyk@upmc.fr
Get access

Abstract

The proton conducting perovskite MZr1−xLnxO3−δHz ceramics are promising electrolytic membranes for fuel cell and water steam electrolyser applications. Simultaneous elastic/quasielastic and diffraction neutron studies were performed in a wide temperature range (25–1150 °C) on protonated Yb-modified BaZrO3 ceramics: dense (97% of theoretical density) and ultradense (99%) using the triple axis spectrometers. The results allowed us to determine: (i) the real content of bulk protonic species ∼1–5 10−3 mol/mol, (ii) the structural modifications caused by the proton doping, and (iii) the bulk proton dynamics. The quasielastic neutron scattering (QNS) results are discussed in the light of neutron diffraction, conductivity, Raman, thermogravimetric, and thermal expansion measurements. The highest bulk proton motion appears in the temperature range where the structural modifications and the energy activation changes are detected. This allows defining the optimum temperature range for the proton dynamics between 400 and 560 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ni, M., Leung, M.K.H., and Leung, D.Y.C.: Energy and exergy analysis of hydrogen production by solid oxide steam electrolyzer plant. Int. J. Hydrogen Energy 32, 4648 (2007).CrossRefGoogle Scholar
2.Olah, G.A.: Beyond oil and gas: The methanol economy. Angew. Chem. Int. Ed. 44, 2636 (2005).CrossRefGoogle ScholarPubMed
3.Iwahara, H., Esaka, T., Uchida, H., and Maeda, N.: Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics 34, 359 (1981).CrossRefGoogle Scholar
4.Colomban, Ph. ed: Proton Conductors Solids, Membranes and Gel—Materials and Devices (Cambridge University Press, Cambridge, 1992).CrossRefGoogle Scholar
5.Nowick, A.S. and Du, Y.: High-temperature protonic conductors with perovskite-related structures. Solid State Ionics 77, 137 (1995).CrossRefGoogle Scholar
6.Ryu, K.H. and Haile, S.: Chemical stability and proton conductivity of doped BaCeO3-BaZrO3. Solid State Ionics 125, 355 (1999).CrossRefGoogle Scholar
7.Scherban, T. and Nowick, A.S.: Bulk protonic conduction in Yb-doped SrCeO3. Solid State Ionics 35, 189 (1989).CrossRefGoogle Scholar
8.Schober, T. and Bohn, H.G.: Water vapor solubility and electrochemical characterization of the high temperature proton conductor SrZr0.9Y0.1O2.95. Solid State Ionics 127, 351 (2000).CrossRefGoogle Scholar
9.Munch, W., Kreur, K.D., Seifert, G., and Maier, J.: Proton diffusion in perovskites: Comparison between BaCeO3, BaZrO3, SrTiO3, and CaTiO3 using quantum molecular dynamics. Solid State Ionics 136137, 183 (2000).CrossRefGoogle Scholar
10.Baikov, Y.M., Gunther, W., Gorelov, V.P., Colomban, Ph., and Baddour-Hadjean, R.: Hydrogen in perovskites, mechanism of solubility, chemical state, effect on electron subsystem, phase transformation. Ionics 4, 347 (1998).CrossRefGoogle Scholar
11.Irvine, J.T.S., Corcoran, D.J.D., Lashtabeg, A., and Walton, J.C.: Incorporation of molecular species into the vacancies of perovskite oxides. Solid State Ionics 154155, 447 (2002).CrossRefGoogle Scholar
12.Kreuer, K.D.: Proton-conducting oxides. Annu. Rev. Mater. Res. 33, 333 (2003).CrossRefGoogle Scholar
13.Norby, T.: Protonic conduction in solids: Bulk and interfaces, in Solid State Ionics in the 21st Century, edited by Kim, S., Yamaguchi, S., and Elliot, J. (MRS Bull. 34(12), 923 2009).Google Scholar
14.Ricote, S., Bonanos, N., and Caboche, G.: Water vapor solubility and conductivity study of the proton conductor BaCe(0.9-x)ZrxY0.1O3-δ. Solid State Ionics 180, 990 (2009).CrossRefGoogle Scholar
15.Coors, W.G.: Co-ionic Conduction in Protonic Ceramics of the Solid Solution, BaCexZr(y-x)Y(1-y)O3-d; Part I: Fabrication and Microstructure. Ceramic materials/Book 3, ISBN 978-953-307-505-1 (Intech, Croatia, 2011).Google Scholar
16.Sala, B., Lacroix, O., Willemin, S., Rhamouni, K., Takenouti, H., Van der Lee, A., Goeuriot, P., Bendjeriou, B., and Colomban, Ph.: Procédé d'optimisation de la conduction ionique d'une membrane conductrice ionique. AREVA, CNRS, ARMINES, SCT. PCT. Patent No WO 2008/152317 A2, December 12, 2008.Google Scholar
17.Colomban, Ph., Slodczyk, A., Lamago, D., Andre, G., Zaafrani, O., Lacroix, O., Willemin, S., and Sala, B.: Proton dynamics and structural modifications in the protonic conductor perovskites. J. Phys. Soc. Jpn. 79, 1 (2010).CrossRefGoogle Scholar
18.Slodczyk, A., Colomban, Ph., Zaafrani, O., Lacroix, O., Loricourt, J., Grasset, F., and Sala, B.: What is the true nature of conducting proton in perovskite ceramic membrane: Hydroxyl ion or interstitial proton? in Solid-State Chemistry of Inorganic Materials VIII, edited by Halasyamani, P.S., Clarke, S.J., Mandrus, D.G., and Choi, K-S. (Mater. Res. Soc. Proc. 1309, Warrendale, PA, 2011); p. 39, mrsf10-1309-ee03-21.Google Scholar
19.Colomban, Ph.: Latest developments in proton conductors. Annu. Chimie Sci. Matériaux Paris 24, 1 (1999).CrossRefGoogle Scholar
20.Colomban, Ph. and Tomkinson, J.: Novel forms of hydrogen in solids: The ‘ionic’ proton and the ‘quasi-free’ proton. Solid State Ionics 97, 123 (1997).CrossRefGoogle Scholar
21.Zaafrani, O.: Protonation, distorsions structurales et espèces protoniques dans des perovskites lacunaires. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, 2010.Google Scholar
22.Ahmed, I., Eriksson, S., Ahlberg, E., Knee, C., Karlsson, M., Matic, A., Engberg, D., and Borjesson, L.: Structural study and proton conductivity in Yb-doped BaZrO3. Solid State Ionics 178, 515 (2007).CrossRefGoogle Scholar
23.Ahmed, I., Knee, C.S., Karlsson, M., Eriksson, S.G., Henry, P.F., Matic, A., Engberg, D., and Börjesson, L.: Location of deuteron sites in the proton conducting perovskite BaZr0.5In0.5O3-y. J. Alloys Compd. 450, 103 (2008).CrossRefGoogle Scholar
24.Sosnowska, I., Przenioslo, R., Schafer, W., Kockelmann, W., Hempelmann, R., and Wysocki, K.: Possible deuterium positions in the high temperature deuterated proton conductor Ba3Ca1+yNb2-yO9-d studied by neutron and x-ray powder diffraction. J. Alloys Compd. 328, 226 (2001).CrossRefGoogle Scholar
25.Shimoyama, T., Tojo, T., Kawaji, H., Atake, T., Igawa, N., and Ishii, Y.: Determination of deuterium location in Ba3Ca1.18Nb1.82O8.73. Solid State Ionics 179, 231 (2008).CrossRefGoogle Scholar
26.Knight, K.: Powder neutron diffraction studies of BaCe0.9Y0.1O2.95 and BaCeO3 at 4.2 K: A possible structural site for the proton. Solid State Ionics 127, 43 (2000).CrossRefGoogle Scholar
27.Sata, N., Hiramato, K., Ishigame, M., Hosoya, S., Niimura, N., and Shin, S.: Site identification of protons in SrTiO3: Mechanism for large protonic conduction. Phys. Rev. B 54, 15795 (1996).CrossRefGoogle ScholarPubMed
28.Slodczyk, A., Tran, C., and Colomban, Ph.: Face to face with enemy—analysis of aqua carbonate hydroxide second surface phases in proton conducting perovskite ceramic electrolytic membrane, in Advanced Materials for Fuel Cells, edited by Hertz, J., DiVona, M.L., Knauth, P., and Tuller, H.L. (Mater. Res. Soc. Proc. 1384, Warrendale, PA, 2012).Google Scholar
29.Jalarvo, N., Haavik, C., Kongshaug, C., Norby, P., and Norby, T.: Conductivity and water uptake of Sr4(Sr2Nb2)O11*nH2O and Sr4(Sr2Ta2)O11*nH2O. Solid State Ionics 180, 1151 (2009).CrossRefGoogle Scholar
30.Lechner, R.E., Dippel, T., Marx, R., and Lamprecht, I.: Proton diffusion mechanism in three solid phases of CsOH, H2O. Solid State Ionics 61, 47 (1993).CrossRefGoogle Scholar
31.Hempelmann, R.: Hydrogen diffusion mechanism in proton conducting oxides. Physica B 226, 72 (1996).CrossRefGoogle Scholar
32.Eckert, J., Kearley, G.J.: Spectrochim. Acta, Part A 48, 269478 (1992).CrossRefGoogle Scholar
33.Lechner, R.E.: Neutron investigations of superprotonic conductors. Ferroelectrics 167, 83 (1995).CrossRefGoogle Scholar
34.Lassègues, J.C., Fouassier, M., Baffier, N., Colomban, Ph., and Dianoux, A.J.: Neutron scattering study of the proton dynamics in NH4+ and OH3+ ß-alumina. J. Phys. 41, 273 (1980).CrossRefGoogle Scholar
35.Colomban, Ph. and Novak, A.: Proton transfer and superionic conductivity in solids and gel. J. Mol. Struct. 177, 277 (1988).CrossRefGoogle Scholar
36.Hempelmann, R., Karmonik, Ch., Matzke, T., Cappadonia, M., Stimming, U., Springer, T., and Adams, M.A.: Quasielastic neutron scattering study of proton diffusion in SrCe0.95Yb0.05H0.02O2.985. Solid State Ionics 77, 152 (1995).CrossRefGoogle Scholar
37.Matzke, Th., Stimming, U., Karmonik, Ch., Soetratmo, M., Hempelmann, R., and Guthoff, F.: Quasielastic thermal neutron scattering experiment on the proton conductor SrCe0.95Yb0.05H0.02O2.985. Solid State Ionics 8688, 621 (1996).CrossRefGoogle Scholar
38.Pionke, M., Mono, T., Schweika, W., Springer, T., and Schober, H.: Investigation of the hydrogen mobility in a mixed perovskite Ba[Ca(1+x)/3Nb(2-x)/3]O3-x/2 by quasielastic neutron scattering. Solid State Ionics 97, 497 (1997).CrossRefGoogle Scholar
39.Karlsson, M., Matic, A., Engberg, D., Bjorketun, M.E., Koza, M.M., Ahmed, I., Wahnstrom, G., Borjesson, L., and Eriksson, S.G.: Quasielastic neutron scattering of hydrated BaZr0.9A0.1O2.95 (A = Y and Sc). Solid State Ionics 180, 22 (2009).CrossRefGoogle Scholar
40.Malikova, N., Loong, C.K., Zanotti, J.M., and Fernandez-Alonso, F.: Proton containing yttrium doped barium cerate: A simultaneous structural and dynamic study by neutron scattering. J. Phys. Chem. C 111, 6574 (2007).CrossRefGoogle Scholar
41.Slodczyk, A., Colomban, Ph., Lamago, D., Limage, M.H., Romain, F., Willemin, S., and Sala, B.: Phase transitions in the H+-conducting perovskite ceramics by the quasi-elastic neutron and high-pressure Raman scattering. Ionics 14, 215 (2008).CrossRefGoogle Scholar
42.Slodczyk, A., Dabrowski, B., Malikova, N., and Colomban, Ph.: Origins of rapid aging of Ba-based proton conducting perovskites, in Next-Generation Fuel Cells—New Materials and Concepts, edited by He, T., Swider-Lyons, K., Park, B., and Kohl, P.A. (Mater. Res. Soc. Proc. 1311, Warrendale, PA, 2011). mrsf10-1311-gg06-25.Google Scholar
43.Slodczyk, A., Colomban, Ph., Willemin, S., Lacroix, O., and Sala, B.: Indirect Raman identification of the proton insertion in the high temperature [Ba/Sr][Zr/Ti]O3 modified perovskite protonic conductors. J. Raman Spectrosc. 40, 513 (2009).CrossRefGoogle Scholar
45.Dianoux, A.J., Tachez, M., Mercier, R., and Malugani, J.P.: Quasielastic and inelastic neutron scattering from AgPO3-AgI glass. J. Non-Cryst. Solids 131133, 973 (1991).CrossRefGoogle Scholar
46.Nivot, Ch., Legros, C., Lesage, B., Kilo, M., and Argirusis, Ch.: Oxygen diffusion in SrZrO3. Solid State Ionics 180, 1040 (2009).CrossRefGoogle Scholar
47.Rietveld, H.M.: Profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65 (1969).CrossRefGoogle Scholar
48.Rodriguez-Carvajal, J.: FullProf software. http://www.ill.eu/.Google Scholar
49.Minichelli, D., Ricciardiello, F., and Sbaizero, O.: Changes of symmetry in the structure of SrCeO3-BaZrO3 solid solutions. Mater. Chem. Phys. 13, 153 (1985).CrossRefGoogle Scholar
50.Parlier, M., Sassolas, G., Boilot, J.P., and Colomban, Ph.: Dilatometric study of β-alumina single crystals. Solid State Ionics 2, 185 (1981).CrossRefGoogle Scholar
51.Pasto, A.E. and Condrate, R.A.: The laser Raman spectra of several perovskite zirconates, in edited by Mathieu, J.P. (Adv. Spectrosc. Vol. 1, Heyden & Sons Ltd., London, 1973).Google Scholar
52.Baliteau, S., Mauvy, F., Fourcade, S., and Grenier, J.C.: Investigation on double perovskite Ba4Ca2Ta2O11. Solid State Sci. 11, 1572 (2009).CrossRefGoogle Scholar