Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-31T10:51:51.124Z Has data issue: false hasContentIssue false

Precipitation of icosahedral phase from amorphous Zr65Cu17.5−xAl7.5Ni10Agx (x = 0, 5) alloys

Published online by Cambridge University Press:  31 January 2011

J. K. Lee
Affiliation:
Center for Noncrystalline Materials, Department of Metallurgical Engineering, Yonsei University, 134 Shinchon-dong, Seoul, 120-749, Korea
G. Choi
Affiliation:
Center for Noncrystalline Materials, Department of Metallurgical Engineering, Yonsei University, 134 Shinchon-dong, Seoul, 120-749, Korea
W. T. Kim
Affiliation:
Department of Physics, Chongju University, 36 Naedok Dong, Chongju 360-764, Korea
D. H. Kim
Affiliation:
Center for Noncrystalline Materials, Department of Metallurgical Engineering, Yonsei University, 134 Shinchon-dong, Seoul, 120-749, Korea
Get access

Abstract

Crystallization behavior of amorphous Zr65Cu17.5−xAl7.5Ni10Agx (x = 0, 5) alloys prepared by melt spinning and injection casting techniques has been studied using differential scanning calorimetry, x-ray diffractometry, and transmission electron microscopy. Ag addition changes crystallization sequence of the amorphous phase. The amorphous Zr65Cu17.5Al7.5Ni10 alloy crystallizes via simultaneous precipitation of icosahedral phase and NiZr2 phase in the first crystallization step whereas that in Zr65Cu12.5Al7.5Ni10Ag5 alloy crystallizes via precipitation of only icosahedral the phase. Partial replacement of Cu by Ag in Zr65Cu17.5Al7.5Ni10 alloy stabilized the icosahedral phase relative to competing intermetallic phases resulting in suppression of the precipitation of the NiZr2 phase, enhancement of the precipitation of icosahedral phase, and reduction of undercooled liquid range. Crystallization behavior of the amorphous Zr65Cu12.5Al7.5Ni10Ag5 alloy is not affected by cooling rate during solidification. Johnson–Mehl–Avrami analysis of isothermal transformation data suggests that the formation of the quasicrystalline phase is not entirely polymorphic in nature and may involve partitioning of the solute at later state.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Poon, S.J., Drehman, A.J., and Lawless, K.R., Phys. Rev. Lett. 55, 2324 (1985).CrossRefGoogle Scholar
2.Shen, Y., Poon, S.J., and Shiflet, B.J., Phys. Rev. B 34, 3516 (1986).CrossRefGoogle Scholar
3.Tsai, A.P., Inoue, A., Bizen, Y., and Masumoto, T., Acta Metall. 37, 1443 (1989).CrossRefGoogle Scholar
4.Holzer, J.C. and Kelton, K.F., Acta Metall. 39, 1833 (1991).CrossRefGoogle Scholar
5.Inoue, A., Bizen, Y., and Masumoto, T., Metall. Trans. A 19, 383 (1988).CrossRefGoogle Scholar
6.Molokanov, V.V. and Chebotnikov, V.N., J. Non-Cryst. Solids. 117/118, 789 (1990).CrossRefGoogle Scholar
7.Xing, L.Q., Eckert, J., Loser, W., and Schultz, L., Appl. Phys. Lett. 74, 664 (1999).CrossRefGoogle Scholar
8.Koster, U., Meinhardt, J., Roos, S., and Liebertz, H., Appl. Phys. Lett. 69, 179 (1996).CrossRefGoogle Scholar
9.Koster, U., Meinhardt, J., Roos, S., and Busch, R., Mater. Sci. Eng. A 226, 995 (1197).Google Scholar
10.Xing, L.Q., Eckert, J., Loser, W., and Schultz, L., Appl. Phys. Lett. 73, 2110 (1998).CrossRefGoogle Scholar
11.Inoue, A., Zhang, T., Saida, J., Matsuashita, M., Chen, M.W., and Sakurai, T., Mater. Trans., JIM 40, 1181 (1999).CrossRefGoogle Scholar
12.Eckert, J., Mattern, N., Zinekevitch, M., and Seidel, M., Mater. Trans. JIM 39, 623 (1998).CrossRefGoogle Scholar
13.Inoue, A., Zhang, T., Saida, J., Chen, M.W., and Sakurai, T., Mater. Trans. JIM 40, 1382 (1999).CrossRefGoogle Scholar
14.Lee, J.K., Choi, G., Kim, W.T., and Kim, D.H., Appl. Phys. Lett. 77, 978 (2000).CrossRefGoogle Scholar
15.Elser, V., Phys. Rev. B 32, 4892 (1985).CrossRefGoogle Scholar
16.Kelton, K.F., Kim, W.J., and Stroud, R.M., Appl. Phys. Lett. 70, 3230 (1997).CrossRefGoogle Scholar
17.Lee, J.K., Kim, W.T., and Kim, D.H., J. Metastable and Nanocrystalline Mater. 10, 101 (2001).CrossRefGoogle Scholar
18.Mandel, P., Tiwari, R.S., Srivastava, O.N., Phys. Rev. B 47, 11774 (1993).CrossRefGoogle Scholar
19.Holland-Moritz, D., Herlach, D.M., and Urban, K., Phys. Rev. Lett. 71, 1196 (1993).CrossRefGoogle Scholar
20.Xing, L.Q., Eckert, J., Loser, W., Schultz, L., Herlach, D.M., Phil. Mag. B 79, 1095 (1999).CrossRefGoogle Scholar
21.Johnson, W.A. and Mehl, R.F., Trans. Am. Inst. Min. Engrs. 135, 416 (1939).Google Scholar
22.Avrami, M., J. Chem. Phys. 7, 1103 (1939).CrossRefGoogle Scholar
23.Christian, J.W., The Theory of Transformations in Metals and Alloys, 2nd ed. (Pergamon Press, Oxford, United Kingdom, 1975), pp. 528, 542.Google Scholar
24.Chen, M.W., Zhang, T., Inoue, A., Sakai, A., and Sakurai, T., Appl. Phys. Lett. 75, 1697 (1999).CrossRefGoogle Scholar
25.Saida, J., Matsushita, M., Zhang, T., Inoue, A., Chen, M.W., and Sakurai, T., Appl. Phys. Lett. 75, 3497 (1999).CrossRefGoogle Scholar