Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-07T14:36:22.428Z Has data issue: false hasContentIssue false

Processing and immobilization of enzyme Ribonuclease A through laser irradiation

Published online by Cambridge University Press:  17 January 2011

C. Popescu
Affiliation:
National Institute for Lasers, Plasma and Radiations Physics, 77125 Bucharest, Romania
J. Roqueta
Affiliation:
Consejo Superior de Investigaciones Científicas, Centre d’Investigacions en Nanociència i Nanotecnologia (CSIC-CIN2), Campus UAB, 08193 Bellaterra, Spain
A. Pérez del Pino
Affiliation:
Consejo Superior de Investigaciones Científicas, Institut de Ciència de Materials de Barcelona (CSIC-ICMAB), Campus UAB, 08193 Bellaterra, Spain
M. Moussaoui
Affiliation:
Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
M. V. Nogués
Affiliation:
Departament de Bioquímica i Biologia Molecular, Facultat de Biociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
E. György*
Affiliation:
National Institute for Lasers, Plasma and Radiations Physics, 77125 Bucharest, Romania; and Consejo Superior de Investigaciones Científicas, Centre d’Investigacions en Nanociència i Nanotecnologia (CSIC-CIN2), Campus UAB, 08193 Bellaterra, Spain
*
a)Address all correspondence to this author. e-mail: eniko.gyorgy@cin2.es
Get access

Abstract

We report the processing and immobilization of enzyme Ribonuclease A (RNase A) onto SiO2 glass collectors using the matrix assisted pulsed laser evaporation (MAPLE) technique. The experiments were performed inside a stainless steel irradiation chamber. A pulsed UV KrF* (λ = 248 nm, τFWHM ≈ 25 ns, ν = 10 Hz) excimer laser source was used for the irradiations. The laser fluence was varied in the range 0.4–0.7 J/cm2. The morphology of the obtained films was investigated by atomic force microscopy (AFM) and their structure and composition by Fourier transform infrared spectroscopy (FTIR). The FTIR spectra of the films obtained from composite MAPLE targets consisting of 1% (w/v) RNase A in Hepes-KOH 10 mM pH 7.5 buffer exhibit the same bands as the spectrum of the initial, nonirradiated material. The enzymatic activity of the obtained structures was analyzed using synthetic substrate polycytidylic acid (poly(C)). The poly (C) cleavage by the immobilized enzyme and the products of formation were analyzed by means of reverse phase high performance liquid chromatography (HPLC).

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.D’Alessio, G. and Riordan, J.F.: Ribonucleases: Structures and functions. (Academic Press, New York, 1997).Google Scholar
2.Parés, X., Nogués, M.V., de Llorens, R., and Cuchillo, C.M.: Structure and function of ribonuclease A binding subsites. In Essays in Biochemistry, Vol. 26, edited by Tipton, K.F.(Portland Press Ltd., London, 1991), pp. 89103.Google Scholar
3.Battistel, E., Bianchi, D., and Rialdi, G.: Thermodynamics of immobilized ribonuclease A. Pure Appl. Chem. 63, 1483 (1991).CrossRefGoogle Scholar
4.Raines, R.T.: Ribonuclease A. Chem. Rev. 98, 1045 (1998).CrossRefGoogle ScholarPubMed
5.Rybak, S.M. and Newton, D.L.: Natural and engineered cytotoxic ribonucleases: Therapeutic potential. Exp. Cell Res. 253, 325 (1999).CrossRefGoogle ScholarPubMed
6.Arnold, U.: Aspects of the cytotoxic action of ribonucleases. Curr. Pharm. Biotechnol. 9, 161 (2008).CrossRefGoogle ScholarPubMed
7.Leland, P.A., Staniszewski, K.E., Kim, B.M., and Raines, R.T.: Endowing human pancreatic ribonuclease with toxicity for cancer cells. J. Biol. Chem. 276, 43095 (2001).CrossRefGoogle ScholarPubMed
8.Teoli, D., Parisi, L., Realdon, N., Guglielmi, M., Rosato, A., and Morpurgo, M.: Wet sol–gel derived silica for controlled release of proteins. J. Controlled Release 116, 295 (2006).CrossRefGoogle ScholarPubMed
9.Brook, M.A., Chen, Y., Zhang, Z., and Brennan, J.D.: Sugar-modified silanes: Precursors for silica monoliths. J. Mater. Chem. 14, 1469 (2004).CrossRefGoogle Scholar
10.Cullen, S.P., Liu, X., Mandel, I.C., Himpsel, F.J., and Gopalan, P.: Polymeric brushes as functional templates for immobilizing ribonuclease A: Study of binding kinetics and activity. Langmuir 24, 913 (2008).CrossRefGoogle ScholarPubMed
11.Zelikin, A.N.: Drug releasing polymer thin films: New era of surface-mediated drug delivery. ACS Nano 4, 2494 (2010).CrossRefGoogle ScholarPubMed
12.Shmueli, R.B., Anderson, D.G., and Green, J.J.: Electrostatic surface modifications to improve gene delivery. Expert Opin. Drug Deliv. 7, 535 (2010).CrossRefGoogle ScholarPubMed
13.Jewell, C.M., Fuchs, S.M., Flessner, R.M., Raines, R.T., and Lynn, D.M.: Multilayered films fabricated from an oligoarginine-conjugated protein promote efficient surface-mediated protein transduction. Biomacromolecules 8, 857 (2007).CrossRefGoogle ScholarPubMed
14.Klibanov, A.M.: Immobilized enzymes and cells as practical catalysts. Science 219, 722 (1983).CrossRefGoogle ScholarPubMed
15.Pulsed Laser Deposition of Thin Films, edited by Eason, R. (Wiley, New York, 2007).Google Scholar
16.Chrisey, D.B., Piqué, A., McGill, R.A., Horwitz, J.S., Ringeisen, B.R., Bubb, D.M., and Wu, P.K.: Laser deposition of polymer and biomaterial films. Chem. Rev. 103, 553 (2003).CrossRefGoogle ScholarPubMed
17.Caricato, A.P., Lomascolo, M., Luches, A., Mandoj, F., Manera, M.G., Mastroianni, M., Martino, M., Paolesse, R., Rella, R., Romano, F., Tunno, T., and Valerini, D.: MAPLE deposition of methoxy Ge triphenylcorrole thin films. Appl. Phys. A 93, 651 (2008).CrossRefGoogle Scholar
18.Bubb, D.M., Wu, P.K., Horwitz, J.S., Callahan, J.H., Galicia, M., Vertes, A., McGill, R.A., Houser, E.J., Ringeisen, B.R., and Chrisey, D.B.: The effect of the matrix on film properties in matrix-assisted pulsed laser evaporation. J. Appl. Phys. 91, 2055 (2002).CrossRefGoogle Scholar
19.Cristescu, R., Cojanu, C., Popescu, A., Grigorescu, S., Duta, L., Ionescu, O.S., Mihaiescu, D., Buruiana, T., Andronie, A., Stamatin, I., Mihailescu, I.N., and Chrisey, D.B.: Laser processing of polyethylene glycol derivative and block copolymer thin films. Appl. Surf. Sci. 255, 5605 (2009).CrossRefGoogle Scholar
20.Cristescu, R., Popescu, C., Popescu, A., Grigorescu, S., Mihailescu, I.N., Mihaiescu, D., Gittard, S.D., Narayan, R.J., Buruiana, T., Stamatin, I., and Chrisey, D.B.: Functional polyethylene glycol derivatives nanostructured thin films synthesized by matrix-assisted pulsed laser evaporation. Appl. Surf. Sci. 255, 9873 (2009).CrossRefGoogle Scholar
21.Gutierrez-Llorente, A., Horwitz, G., Perez-Casero, R., Perriere, J., Fave, J.L., Yassar, A., and Sant, C.: Growth of polyalkylthiophene films by matrix assisted pulsed laser evaporation. Org. Electron. 5, 29 (2004).CrossRefGoogle Scholar
22.Ringeisen, B.R., Callahan, J., Wu, P.K., Pique, A., Spargo, B., McGill, R.A., Bucaro, M., Bubb, D.M., and Chrisey, D.B.: Novel laser-based deposition of active protein thin films. Langmuir 17, 3472 (2001).CrossRefGoogle Scholar
23.Hernandez-Perez, M.A., Garapon, C., Champeaux, C., Shahgaldia, P., Coleman, A., and Mugnier, J.: Pulsed laser deposition of bovine serum albumin protein thin films. Appl. Surf. Sci. 208209, 658 (2003).CrossRefGoogle Scholar
24.Kecskemeti, G., Kresz, N., Smausz, T., Hopp, B., and Nogradi, A.: Pulsed laser deposition of pepsin thin films. Appl. Surf. Sci. 247, 83 (2005).CrossRefGoogle Scholar
25.Tsuboi, Y., Goto, M., and Haya, A.: Pulsed laser deposition of silk protein: Effect of photosensitized-ablation on the secondary structure in thin deposited films. J. Appl. Phys. 89, 7917 (2001).CrossRefGoogle Scholar
26.Stamatin, L., Cristescu, R., Socol, G., Mihaiescu, D., Stamatin, I., Mihailescu, I.N., and Chrisey, D.B.: Laser deposition of fibrinogen blood proteins thin films by matrix assisted pulsed laser evaporation. Appl. Surf. Sci. 248, 422 (2005).CrossRefGoogle Scholar
27.György, E., Santiso, J., Figueras, A., Socol, G., and Mihailescu, I.N.: Biomolecular papain thin films deposited by laser techniques. J. Mater. Sci.—Mater. Med. 18, 1643 (2007).CrossRefGoogle ScholarPubMed
28.György, E., Pérez del Pino, A., Sauthier, G., and Figueras, A.: Biomolecular papain thin films grown by matrix assisted and conventional pulsed laser deposition: A comparative study. J. Appl. Phys. 106, 114702 (2009).CrossRefGoogle Scholar
29.György, E., Axente, E., Mihailescu, I.N., Predoi, D., Ciuca, S., and Neamtu, J.: Creatinine biomaterial thin films grown by laser techniques. J. Mater. Sci.—Mater. Med. 19, 1335 (2008).CrossRefGoogle ScholarPubMed
30.György, E., Sima, F., Mihailescu, I.N., Smausz, T., Megyeri, G., Kékesi, R., Hopp, B., Zdrentu, L., and Petrescu, S.M.: Immobilization of urease by laser techniques: Synthesis and application to urea biosensors. J. Biomed. Mater. Res. 89A, 186 (2009).CrossRefGoogle Scholar
31.Smausz, T., Megyeri, G., Kékesi, R., Vass, C., György, E., Sima, F., Mihailescu, I.N., and Hopp, B.: Comparative study on pulsed laser deposition and matrix assisted pulsed laser evaporation of urease thin films. Thin Solid Films 517, 4299 (2009).CrossRefGoogle Scholar
32.György, E., Sima, F., Mihailescu, I.N., Smausz, T., Hopp, B., Predoi, D., Zdrentu, L.E., and Petrescu, S.: Biomolecular urease thin films grown by laser techniques for blood diagnostic applications. J. Mater. Eng., C 30, 537 (2010).CrossRefGoogle Scholar
33.Bohandy, J., Kim, B.F., and Adrian, F.J.: Metal deposition from a supported metal film using an excimer laser. J. Appl. Phys. 60, 1538 (1986).CrossRefGoogle Scholar
34.Kantor, Z., Toth, Z., and Szorenyi, T.: Laser induced forward transfer: The effect of support-film interface and film-to-substrate distance on transfer. Appl. Phys. A 54, 170 (1992).CrossRefGoogle Scholar
35.Fogarassy, E., Fuchs, F., Kerheve, F., Hauchecorne, G., and Perriere, J.: Laser induced forward transfer of high T c YBaCuO and BiSrCaCuO superconducting thin films. J. Appl. Phys. 66, 457 (1989).CrossRefGoogle Scholar
36.Piqué, A., Chrisey, D.B., and Auyeung, R.C.Y.: A novel laser transfer process for direct writing of electronic and sensor materials. Appl. Phys. A 69, S279 (1999).Google Scholar
37.Ringeisen, B.R., Chrisey, D.B., Piqué, A., Young, H.D., Modi, R., Bucaro, M., Jones-Meehan, J., and Spargo, B.J.: Generation of mesoscopic patterns of viable Escherichia coli by ambient laser transfer. Biomaterials 23, 161 (2002).CrossRefGoogle ScholarPubMed
38.Serra, P., Fernández-Pradas, J.M., Berthet, F.X., Colina, M., Elvira, J., and Morenza, J.L.: Laser direct writing of biomolecule microarrays. Appl. Phys. A 79, 949 (2004).CrossRefGoogle Scholar
39.Serra, P., Colina, M., Fernández-Pradas, J.M., Sevilla, L., and Morenza, J.L.: Preparation of functional DNA microarrays through laser-induced forward transfer. Appl. Phys. Lett. 85, 1639 (2004).CrossRefGoogle Scholar
40.Barron, J.A., Wu, P., Ladouceur, H.D., and Ringeisen, B.R.: Biological laser printing: A novel technique for creating heterogeneous 3-dimentional cell patterns. Biomed. Microdevices 6, 139 (2004).CrossRefGoogle Scholar
41.Hopp, B., Smausz, T., Barna, N., Vass, C., Antal, Z., Kredics, L., and Chrisey, D.: Time-resolved study of absorbing film assisted laser induced forward transfer of Trichoderma longibrachiatum conidia. J. Phys. D: Appl. Phys. 38, 833 (2005).CrossRefGoogle Scholar
42.Karaiskou, A., Zergioti, I., Fotakis, C., Kapsetaki, M., and Kafetzopoulos, D.: Microfabrication of biomaterials by the sub-ps laser-induced forward transfer process. Appl. Surf. Sci. 208209, 245 (2003).CrossRefGoogle Scholar
43.Moussaoui, M., Guasch, A., Boix, E., Cuchillo, C.M., and Nogués, M.V.: The role of non-catalytic binding subsites in the endonuclease activity of bovine pancreatic ribonuclease A. J. Biol. Chem. 271, 4687 (1996).CrossRefGoogle ScholarPubMed
44.Dingus, R.S. and Scammon, R.J.: Grüneisen-stress-induced ablation of biological tissue. Proc. SPIE 1427, 45 (1991).CrossRefGoogle Scholar
45.Cramer, R., Haglund, R.F. Jr., and Hillenkamp, F.: Matrix-assisted laser desorption and ionization in the O–H and C=O absorption bands of aliphatic and aromatic matrices: Dependence on laser wavelength and temporal beam profile. J. Mass Spectrom. Ion Processes 169(170), 51 (1997).CrossRefGoogle Scholar
46.Leveugle, E., Ivanov, D., and Zhigilei, L.V.: Photomechanical spallation of molecular and metal targets: Molecular dynamics study. Appl. Phys. A 79, 1643 (2004).CrossRefGoogle Scholar
47.Mercado, A.L., Allmond, C.E., Hoekstra, J.G., and Fitz-Gerald, J.M.: Pulsed laser deposition vs. matrix assisted pulsed laser evaporation for growth of biodegradable polymer thin films. Appl. Phys. A 81, 591 (2005).CrossRefGoogle Scholar
48.Georg, H., Wharton, C.W., and Siebert, F.: Temperature induced protein unfolding and folding of RNase A studied by time-resolved infrared spectroscopy. Laser Chem. 19, 233 (1999).CrossRefGoogle Scholar
49.Kong, J. and Yu, S.: Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim. Biophys. Sin. 39, 549 (2007).CrossRefGoogle ScholarPubMed
50.Neault, J.F., Diamantoglou, S., Bearegard, M., Nafisi, S., and Tajmir-Riahi, H.A.: Protein unfolding in drug-RNase complexes. J. Biomol. Struct. Dyn. 25, 387 (2008).CrossRefGoogle ScholarPubMed
51.Del Vecchio, P., Catanzano, F., de Paola, B., and Barone, G.: Thermodynamic stability of ribonuclease B. J. Therm. Anal. Calorim. 61, 363 (2000).CrossRefGoogle Scholar