Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-29T02:45:21.724Z Has data issue: false hasContentIssue false

Reconstruction of grain boundaries in copper and gold by simulation

Published online by Cambridge University Press:  03 March 2011

S.R. Phillpot
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

The reconstructions of high-angle twist grain boundaries on the four densest atomic planes in fcc copper, as described by a Lennard-Jones potential, and gold, as described by an embedded-atom-method potential, are investigated using the recently developed method of grand-canonical simulated quenching. It is found that the grain boundaries on the widely spaced (111) and (100) planes do not reconstruct, while those on the less widely spaced (110) and (113) planes do reconstruct. The effect that reconstruction can have on the physical properties of an interfacial system is illustrated by comparing the elastic properties and ideal cleavage energies of reconstructed grain boundaries with those of corresponding unreconstructed grain boundaries.

Type
Articles
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Wolf, D. and Merkle, K. L., in Materials Interfaces: Atomic Level Structure and Properties, edited by Wolf, D. and Yip, S. (Chapman & Hall, London, 1992).Google Scholar
2Wolf, D. and Benedek, R., Adv. Ceram. 1, 107 (1981).Google Scholar
3Wolf, D., J. de Phys. 43C 6, 45 (1982).Google Scholar
4Wolf, D., J. Am. Ceram. Soc. 67, 1 (1984).CrossRefGoogle Scholar
5Sun, C. P. and Balluffi, R. W., Philos. Mag. A 46, 49 (1982).CrossRefGoogle Scholar
6Eastman, J. A., Schmuckle, F., Vaudin, M., and Sass, S. L., Adv. Ceram. 10, 324 (1984).Google Scholar
7Liou, K. Y. and Peterson, N. L., in Surfaces and Interfaces in Ceramic and Ceramic-Metal Systems, edited by Pask, J. and Evans, A. (Plenum Press, New York, 1981).Google Scholar
8Tasker, P. W. and Duffy, D. M., Philos. Mag. A 47, L45 (1983).CrossRefGoogle Scholar
9Wolf, D., in Defect Properties and Processing of High-Technology Nonmetallic Materials, edited by Crawford, J. H. Jr., Chen, Y., and Sibley, W. A. (Mater. Res. Soc. Symp. Proc. 24, Elsevier Science Publishing, New York, 1984), p. 47.Google Scholar
10Phillpot, S. R. and Rickman, J. M., J. Chem. Phys. 97, 2651 (1992).CrossRefGoogle Scholar
11Phillpot, S. R., in Materials Theory and Modelling, edited by Bristowe, P. D., Broughton, J., and Newsam, J. M. (Mater. Res. Soc. Symp. Proc. 291, Pittsburgh, PA, 1993), p. 49.Google Scholar
12Hill, T. L., Statistical Mechanics (McGraw-Hill, New York, 1956).Google Scholar
13Daw, M. S. and Baskes, M. I., Phys. Rev. Lett. 50, 1285 (1983).CrossRefGoogle Scholar
14Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, 6443 (1984).CrossRefGoogle Scholar
15Stoddard, S. D. and Ford, J., Phys. Rev. A 8, 1504 (1973).CrossRefGoogle Scholar
16Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).Google Scholar
17Foiles, S. M., Baskes, M. I., and Daw, M. S., Phys. Rev. B 33, 7983 (1986).CrossRefGoogle Scholar
18Wolf, D., Surf. Sci. 226, 389 (1990).CrossRefGoogle Scholar
19Wolf, D., Acta Metall. 37, 1983 (1989).CrossRefGoogle Scholar
20Wolf, D., Acta Metall. 37, 2823 (1989).CrossRefGoogle Scholar
21Wolf, D. and Kluge, M. D., Scripta Metall. 24, 907 (1990).CrossRefGoogle Scholar
22Wolf, D. and Lutsko, J. F., J. Mater. Res. 4, 1427 (1989).CrossRefGoogle Scholar
23Phillpot, S. R., J. Appl. Phys. 72, 5606 (1992).CrossRefGoogle Scholar
24Griffith, A. A., Trans. R. Soc. London A 221, 163 (1920).Google Scholar
25Jokl, M. L., Vitek, V., and McMahon, C. J., Acta Metall. 28, 1479 (1980).CrossRefGoogle Scholar
26Wolf, D., Lutsko, J. F., and Kluge, M. D., in Atomistic Simulation of Materials—Beyond Pair Potentials, edited by Vitek, V. and Srolovitz, D. J. (Plenum Press, Chicago, IL, 1989).Google Scholar
27Majid, I., Bristowe, P. D., and Balluffi, R. W., Phys. Rev. B 40, 2779 (1989).CrossRefGoogle Scholar
28Taylor, M. S., Majid, I., Bristowe, P. D., and Balluffi, R. W., Phys. Rev. B 40, 2772 (1989).CrossRefGoogle Scholar
29Fitzsimmons, M. R. and Sass, S. L., Acta Metall. 37, 1009 (1989).CrossRefGoogle Scholar
30Majid, I. and Bristowe, P. D., Philos. Mag. A 66, 73 (1992).CrossRefGoogle Scholar
31Swope, W. C. and Andersen, H. C., Phys. Rev. A 46, 4539 (1992).CrossRefGoogle Scholar
32Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., Numerical Recipes: The Art of Scientific Computing, 2nd Edition (Cambridge University Press, Cambridge, U. K., 1992).Google Scholar
33Press, W. H. and Teukolsky, S. A., Computers in Physics 5, 426 (1991).CrossRefGoogle Scholar
34Phillpot, S. R., unpublished research.Google Scholar