Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-12T21:27:32.631Z Has data issue: false hasContentIssue false

Refractory Mo–Si-Based Glassy Alloy Designed for Ultrahigh Strength and Thermal Stability

Published online by Cambridge University Press:  03 March 2011

X.Q. Zhang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
W. Wang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
E. Ma
Affiliation:
Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, Maryland 21218
J. Xu*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: jianxu@imr.ac.cn
Get access

Abstract

Mechanically alloyed Mo44Si26Ta5Zr5Fe3Co12Y5 multicomponent glassy alloy exhibits an exceptionally high glass transition temperature of 1202 K and a crystallization temperature of 1324 K, as well as an ultrahigh hardness of 18 GPa. This example is used to demonstrate metallic glasses that possess extraordinary thermal stability and ultrahigh strength and, at the same time, a wide supercooled liquid region (122 K) that is needed for processing into bulk forms through powder metallurgy routes.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Johnson, W.L.: Bulk glass-forming metallic alloys: Science and technology. MRS Bull. 24(10), 42 (1999).CrossRefGoogle Scholar
2Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
3Xu, D.H., Duan, G. and Johnson, W.L.: Unusual glass-forming ability of bulk amorphous alloys based on ordinary metal copper. Phys. Rev. Lett. 92, 244504 (2004).CrossRefGoogle ScholarPubMed
4Inoue, A., Shen, B.L. and Chang, C.T.: Super-high strength of over 4000 MPa for Fe-based bulk glassy alloys in [(Fe1−xCox)0.75B0.2Si0.05]96Nb4 system. Acta Mater. 52, 4093 (2004).CrossRefGoogle Scholar
5Ponnambalam, V., Poon, S.J., Shiflet, G.J., Keppens, V.M., Taylor, R. and Petculescu, G.: Synthesis of iron-based bulk metallic glasses as nonferromagnetic amorphous steel alloys. App. Phys. Lett. 83, 1131 (2003).CrossRefGoogle Scholar
6Lu, Z.P., Liu, C.T., Thompson, J.R. and Porter, W.D.: Structural amorphous steels. Phys. Rev. Lett. 92, 244503 (2004).CrossRefGoogle ScholarPubMed
7Inoue, A., Shen, B.L., Koshiba, H., Kato, H. and Yavari, A.R.: Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties. Nat. Mater. 2, 661 (2003).CrossRefGoogle ScholarPubMed
8Choi-Yim, H., Xu, D.H. and Johnson, W.L.: Ni-based bulk metallic glass formation in the Ni–Nb–Sn and Ni–Nb–Sn–X (X = B, Fe, Cu) alloy systems. Appl. Phys. Lett. 82, 1030 (2003).CrossRefGoogle Scholar
9Ohtsuki, M., Tamura, R., Takeuchi, S., Yoda, S. and Ohmura, T.: Hard metallic glass of tungsten-based alloy. Appl. Phys. Lett. 84, 4911 (2004).CrossRefGoogle Scholar
10El-Eskandarany, M.S., Zhang, W. and Inoue, A.: Mechanically induced crystalline–glassy phase transformations of mechanically alloyed Ta55Zr10Al10Ni10Cu15 multicomponent alloy powders. J. Alloys Compd. 350, 222 (2003).CrossRefGoogle Scholar
11El-Eskandarany, M.S., Matsushita, M. and Inoue, A.: Mechanically driven solid state amorphization reaction of ball-milled Nb50Zr10Al10Ni10Cu20 powders and the effect of annealing. J. Non-Cryst. Solids 312–314, 622 (2002).CrossRefGoogle Scholar
12El-Eskandarany, M.S., Ishihara, S. and Inoue, A.: Mechanism of solid-state reaction for fabrication of new glassy V45Zr22Ni22Cu11 alloy powders and subsequent consolidation. J. Mater. Res. 18, 2435 (2003).CrossRefGoogle Scholar
13Chen, H.S.: Glassy metals. Rep. Prog. Phys. 43, 353 (1980).CrossRefGoogle Scholar
14Inoue, A., Nakamura, T., Sugita, T., Zhang, T. and Masumoto, T.: Bulky La–Al–TM (TM = transition metal) amorphous alloys with high tensile strength produced by a high-pressure die casting method. Mater. Trans. JIM 34, 351 (1993).CrossRefGoogle Scholar
15Amiya, K. and Inoue, A.: Thermal stability and mechanical properties of Mg–Y–Cu–M (M = Ag, Pd) bulk amorphous alloys. Mater. Trans. JIM 41, 1460 (2000).CrossRefGoogle Scholar
16Peker, A. and Johnson, W.L.: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
17Inoue, A. and Zhang, T.: Fabrication of bulky Zr-based glassy alloys by suction casting into copper mold. Mater. Trans. JIM 36, 1184 (1995).CrossRefGoogle Scholar
18Kim, Y.C., Bae, D.H., Kim, W.T. and Kim, D.H.: Glass forming ability and crystallization behavior of Ti-based amorphous alloys with high specific strength. J. Non-Cryst. Solids 325, 242 (2003).CrossRefGoogle Scholar
19Xu, D.H., Lohwongwatana, B., Duan, G., Johnson, W.L. and Garland, C.: Bulk metallic glass formation in binary Cu-rich alloy series—Cu100−xZrx (x = 34, 36, 38.2, 40 at.%) and mechanical properties of bulk Cu64Zr36 glass. Acta Mater. 52, 2621 (2004).CrossRefGoogle Scholar
20Inoue, A., Zhang, T., Kurosaka, K. and Zhang, W.: High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti–Be system. Mater. Trans. 42, 1800 (2001).CrossRefGoogle Scholar
21Inoue, A., Zhang, W., Zhang, T. and Kurosaka, K.: High-strength Cu-based bulk glassy alloys in Cu–Zr–Ti and Cu–Hf–Ti ternary systems. Acta Mater. 49, 2645 (2001).CrossRefGoogle Scholar
22Xu, D.H., Duan, G., Johnson, W.L. and Garland, C.: Formation and properties of new Ni-based amorphous alloys with critical casting thickness up to 5 mm. Acta Mater. 52, 3493 (2004).CrossRefGoogle Scholar
23Lee, J.K., Bae, D.H., Yi, S., Kim, W.T. and Kim, D.H.: Effects of Sn addition on the glass forming ability and crystallization behavior in Ni–Zr–Ti–Si alloys. J. Non-Cryst. Solids 333, 212 (2004).CrossRefGoogle Scholar
24Lee, M., Bae, D., Kim, W.T. and Kim, D.H.: Ni-based refractory bulk amorphous alloys with high thermal stability. Mater. Trans. 44, 2084 (2003).CrossRefGoogle Scholar
25Zhang, T. and Inoue, A.: New bulk glassy Ni-based alloys with high strength of 3000 MPa. Mater. Trans. 43, 708 (2002).CrossRefGoogle Scholar
26Amiya, K., Urata, A., Nishiyama, N. and Inoue, A.: Fe–B–Si–Nb bulk metallic glassed with high strength above 4000 MPa and distinct elongation. Mater. Trans. 45, 1214 (2004).CrossRefGoogle Scholar
27Inoue, A., Shen, B.L., Yavari, A.R. and Greer, A.L.: Mechanical properties of Fe-based bulk glassy alloys in Fe–B–Si–Nb and Fe–Ga–P–C–B–Si systems. J. Mater. Res. 18, 1487 (2003).CrossRefGoogle Scholar
28Nieh, T.G., Wang, J.G. and Liu, C.T.: Deformation of a multiphase Mo-9.4Si-13.8B alloy at elevated temperatures. Intermetallics 9, 73 (2001).CrossRefGoogle Scholar
29Ma, E., Pagan, J., Cranford, G. and Atzmon, M.: Evidence for self-sustained MoSi2 formation during room-temperature high-energy ball milling of elemental powders. J. Mater. Res. 8, 1836 (1993).CrossRefGoogle Scholar
30de Boer, F.R., Boom, R., Mattens, W.C.M., Miedema, A.R. and Nissen, A.K.: Cohesion in Metals: Transition Metal Alloys , (North Holland, Amsterdam, 1988.) .Google Scholar
31Miracle, D.B., Sanders, W.S. and Senkov, O.N.: The influence of efficient atomic packing on the constitution of metallic glasses. Philos. Mag. 83, 2049 (2003).CrossRefGoogle Scholar
32Guo, F.Q., Poon, S.J. and Shiflet, G.J.: Enhanced bulk metallic glass formability by combining chemical compatibility and atomic size effects. J. Appl. Phys. 97, 013512 (2004).CrossRefGoogle Scholar
33Hays, C.C., Kim, C.P. and Johnson, W.L.: Large supercooled liquid region and phase separation in the Zr–Ti–Ni–Cu–Be bulk metallic glasses. Appl. Phys. Lett. 75, 1089 (1999).CrossRefGoogle Scholar
34Chen, L.C. and Spaepen, F.: Analysis of calorimetric measurements of grain growth. J. Appl. Phys. 69, 679 (1991).CrossRefGoogle Scholar
35Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
36Chou, C.P., Davis, L.A. and Narasimban, M.C.: Elastic constants of metallic glasses. Scr. Metall 11, 417 (1977).CrossRefGoogle Scholar
37Winter, M.: WebElements™ Periodic Table, Professional Edition. (University of Sheffield, U.K., 2005) http://www.webelements.com.Google Scholar