Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-03T01:22:27.070Z Has data issue: false hasContentIssue false

Spray pyrolysis of phase pure AgCu particles using organic cosolvents

Published online by Cambridge University Press:  25 September 2013

Kai Zhong
Affiliation:
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740
George Peabody
Affiliation:
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740
Elizabeth Blankenhorn
Affiliation:
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740
Howard Glicksman
Affiliation:
DuPont Electronic Technologies, Research Triangle Park, North Carolina 27709
Sheryl Ehrman*
Affiliation:
Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740
*
a)Address all correspondence to this author. e-mail: sehrman@umd.edu
Get access

Abstract

Nano- and micron-sized metal particles have important applications in catalysis and in the medical and electronic industries. For applications requiring high conductivity, such as thick film conductive pastes or isotropic conductive adhesives, AgCu particles combine high conductivity with advantages of lower costs. Here, we report the generation of AgCu particles by spray pyrolysis, a process that has the advantages of simple experimental setup, large-scale production ability, and controllable particle size. Solutions of copper nitrate and silver nitrate dissolved in deionized water with either 40 vol% ethanol (ET) or 40 vol% ethylene glycol (EG) were used as the precursor. Phase separation was observed during the generation of AgCu particles, and the particles were mainly Ag-rich and Cu-rich solid solutions. The short reactor residence time experiments indicated that both the cosolvent properties and operating conditions affect the particle formation process and change the structure of particles.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lewis, L.: Chemical catalysis by colloids and clusters. Chem. Rev. 93(8), 2693 (1993).CrossRefGoogle Scholar
Link, S. and El-Sayed, M.: Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103(40), 8410 (1999).CrossRefGoogle Scholar
Watari, F., Yokoyama, A., Omori, M., Hirai, T., Kondo, H., Uo, M., and Kawasaki, T.: Biocompatibility of materials and development to functionally graded implant for bio-medical application. Compos. Sci. Technol. 64(6), 893 (2004).CrossRefGoogle Scholar
Sheppard, L.: Progress continues in capacitor technology. Am. Ceram. Soc. Bull. 72(3), 45 (1993).Google Scholar
Kim, S.J., Stach, E.A., and Handwerker, C.A.: Fabrication of conductive interconnects by Ag migration in Cu-Ag core-shell nanoparticles. Appl. Phys. Lett. 96(14), 144101 (2010).CrossRefGoogle Scholar
Yim, M.J., Li, Y., Moon, K.S., and Wong, C.P.: High performance anisotropic conductive adhesives using copper particles with an anti-oxidant coating layer. J. Electron. Packag. 132(1), 011007 (2010).CrossRefGoogle Scholar
Tao, Y., Xia, Y., Wang, H., Gong, F.H., Wu, H.P., and Tao, G.L.: Novel isotropical conductive adhesives for electronic packaging application. IEEE Trans. Adv. Packag. 32(3), 589 (2009).CrossRefGoogle Scholar
Lu, D.D. and Wong, C.P.: Recent advances in developing high performance isotropic conductive adhesives. J. Adhes. Sci. Technol. 22(8–9), 835 (2008).Google Scholar
Liu, J., Li, X., and Zeng, X.: Silver nanoparticles prepared by chemical reduction-protection method, and their application in electrically conductive silver nanopaste. J. Alloys Compd. 494(1–2), 84 (2010).CrossRefGoogle Scholar
Kang, S. and Purushothaman, S.: Development of conducting adhesive materials for microelectronic applications. J. Electron. Mater. 28(11), 1314 (1999).CrossRefGoogle Scholar
Wu, H.P., Wu, X.J., Ge, M.Y., Zhang, G.Q., Wang, Y.W., and Jiang, J.Z.: Properties investigation on isotropical conductive adhesives filled with silver coated carbon nanotubes. Compos. Sci. Technol. 67(6), 1182 (2007).CrossRefGoogle Scholar
Speight, J.: Lange’s Handbook of Chemistry, 70th Anniversary Edition, 16th ed. (McGraw-Hill Professional, New York, 2004).Google Scholar
Gurav, A., Kodas, T., Pluym, T., and Xiong, Y.: Aerosol processing of materials. Aerosol Sci. Technol. 19(4), 411 (1993).CrossRefGoogle Scholar
Gurmen, S., Ebin, B., Stopic, S., and Friedrich, B.: Nanocrystalline spherical iron-nickel (Fe-Ni) alloy particles prepared by ultrasonic spray pyrolysis and hydrogen reduction (USP-HR). J. Alloys Compd. 480(2), 529 (2009).CrossRefGoogle Scholar
Eroglu, S., Zhang, S.C., and Messing, G.L.: Synthesis of nanocrystalline Ni-Fe alloy powders by spray pyrolysis. J. Mater. Res. 11(9), 2131 (1996).CrossRefGoogle Scholar
Pluymt, T., Kodas, T., Wang, L., and Glicksman, H.: Silver-palladium alloy particle production by spray pyrolysis. J. Mater. Res. 10(7), 1661 (1995).CrossRefGoogle Scholar
Aoyagi, N., Ookawa, T., Ueyama, R., Ogata, N., and Ogihara, T.: Preparation of Ag-Pd alloy particles by ultrasonic spray pyrolysis and application to electrode for LTCC. Electroceramics in Japan VI 248, 187 (2003).Google Scholar
Jung, C., Lee, H., Kim, C., and Bhaduri, S.: Synthesis of Cu-Ni alloy powder directly from metal salts solution. J. Nanopart. Res. 5(3–4), 383 (2003).CrossRefGoogle Scholar
Yang, S.Y., Kim, K., and Kim, S.G.: Reductive crystallization of each metal in composite particles spray-pyrolyzed from silver/nickel mixed nitrates. Korean J. Chem. Eng. 25(2), 359 (2008).CrossRefGoogle Scholar
Jang, H.C., Ju, S.H., and Kang, Y.C.: Spherical shape Ni-Co alloy powders directly prepared by spray pyrolysis. J. Alloys Compd. 478(1–2), 206 (2009).CrossRefGoogle Scholar
Ju, S.H., Jang, H.C., Kang, Y.C., and Kim, D.W.: Characteristics of Sn-Ni alloy powders directly prepared by spray pyrolysis. J. Alloys Compd. 478(1–2), 177 (2009).CrossRefGoogle Scholar
Kim, J.H., Babushok, V.I., Germer, T.A., Mulholland, G.W., and Ehrman, S.H.: Cosolvent-assisted spray pyrolysis for the generation of metal particles. J. Mater. Res. 18(7), 1614 (2003).CrossRefGoogle Scholar
Zhong, K., Peabody, G., Glicksman, H., and Ehrman, S.: Particle generation by cosolvent spray pyrolysis: Effects of ethanol and ethylene glycol. J. Mater. Res. 27(19), 2540 (2012).CrossRefGoogle Scholar
Xia, B., Lenggoro, I.W., and Okuyama, K.: The roles of ammonia and ammonium bicarbonate in the preparation of nickel particles from nickel chloride. J. Mater. Res. 15(10), 2157 (2000).CrossRefGoogle Scholar
Xia, B., Lenggoro, I., and Okuyama, K.: Preparation of Ni particles by ultrasonic spray pyrolysis of NiCl2·6H2O precursor containing ammonia. J. Mater. Sci. 36(7), 1701 (2001).CrossRefGoogle Scholar
Kim, K.N. and Kim, S.G.: Nickel particles prepared from nickel nitrate with and without urea by spray pyrolysis. Powder Technol. 145(3), 155 (2004).CrossRefGoogle Scholar
Jokanović, V., Čolović, B., Stopić, S., and Friedrich, B.: Designing of copper nanoparticle size formed via aerosol pyrolysis. Metall. Mater. Trans. A 43(11), 4427 (2012).CrossRefGoogle Scholar
Jian, G., Liu, L., and Zachariah, M.R.: Facile aerosol route to hollow CuO spheres and its superior performance as an oxidizer in nanoenergetic gas generators. Adv. Funct. Mater. 23(10), 1341 (2013).CrossRefGoogle Scholar
Tsai, K.L. and Dye, J.L.: Nanoscale metal particles by homogeneous reduction with alkalides or electrides. J. Am. Chem. Soc. 113(5), 1650 (1991).CrossRefGoogle Scholar
Hirai, H., Nakao, Y., and Toshima, N.: Colloidal rhodium in poly(vinylpyrrolidone) as hydrogenation catalyst for internal olefins. Chem. Lett. 7(5), 545 (1978).CrossRefGoogle Scholar
Kurihara, L., Chow, G., and Schoen, P.: Nanocrystalline metallic powders and films produced by the polyol method. Nanostruct. Mater. 5(6), 607 (1995).CrossRefGoogle Scholar
Fievet, F., Fievetvincent, F., Lagier, J., Dumont, B., and Figlarz, M.: Controlled nucleation and growth of micrometer size copper particles prepared by the polyol process. J. Mater. Chem. 3(6), 627 (1993).CrossRefGoogle Scholar
Cardenas-Trivino, G., Klabunde, K.J., and Dale, E.B.: Living colloidal palladium in nonaqueous solvents. Formation, stability, and film-forming properties. Clustering of metal atoms in organic media. 14. Langmuir 3(6), 986 (1987).CrossRefGoogle Scholar
Satoh, N. and Kimura, K.: Metal colloids produced by means of gas evaporation technique. 5. Colloidal dispersion of Au fine particles to hexane, poor dispersion medium for metal sol. Bull. Chem. Soc. Jpn. 62(6), 1758 (1989).CrossRefGoogle Scholar
Jain, S., Skamser, D.J., and Kodas, T.T.: Morphology of single-component particles produced by spray pyrolysis. Aerosol Sci. Technol. 27(5), 575 (1997).CrossRefGoogle Scholar
Majumdar, D., Shefelbine, T.A., Kodas, T.T., and Glicksman, H.D.: Copper (I) oxide powder generation by spray pyrolysis. J. Mater. Res. 11(11), 2861 (1996).CrossRefGoogle Scholar
Nagashima, K., Iwaida, T., Sasaki, H., Katatae, Y., and Kato, A.: Preparation of fine, spherical copper particles by spray pyrolysis technique. Nippon Kagaku Kaishi 1, 17 (1990).CrossRefGoogle Scholar
Zhong, K., Peabody, G., Blankenhorna, E., Glicksman, H., and Ehrman, S.: A spray pyrolysis approach for the generation of patchy particles. Aerosol Sci. Technol. 47(2), 1 (2013).CrossRefGoogle Scholar
Venetsanos, A.G., Adams, P., and Azkarate, I.: On the use of hydrogen in confined spaces: Results from the internal project InsHyde. Int. J. Hydrogen Energy 36(3), 2693 (2011).CrossRefGoogle Scholar
Okamoto, H.: Desk Handbook: Phase Diagrams for Binary Alloys (ASM International, Materials Park, OH, 2000).Google Scholar
Pruppacher, H.R. and Klett, J.D.: Microphysics of Clouds and Precipitation (Springer, New York, 1996).Google Scholar
Friedlander, S.K.: Smoke, dust, and haze: Fundamentals of aerosol behavior (Wiley, Hoboken, NJ, 1977).Google Scholar
Yang, J., Deivaraj, T.C., Too, H.P., and Lee, J.Y.: Acetate stabilization of metal nanoparticles and its role in the preparation of metal nanoparticles in ethylene glycol. Langmuir 20(10), 4241 (2004).CrossRefGoogle ScholarPubMed
Fievet, F., Lagier, J., Blin, B., Beaudoin, B., and Figlarz, M.: Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and sub-micron size metal particles. Solid State Ionics 3233, 198 (1989).CrossRefGoogle Scholar
Lvov, B. and Novichikhin, A.: Mechanism of thermal decomposition of hydrated copper nitrate in vacuo. Spectrochim. Acta, Part B 50(12), 1459 (1995).CrossRefGoogle Scholar
Jackson, J., Fonseca, R., and Holcombe, J.: Mass spectral studies of thermal decomposition of metal nitrates. Spectrochim. Acta, Part B 50(12), 1449 (1995).CrossRefGoogle Scholar
Supplementary material: File

Ehrman Supplementary Material

Supplementary Materials

Download Ehrman Supplementary Material(File)
File 66 KB