Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-09T00:56:10.706Z Has data issue: false hasContentIssue false

Stereophotogrammetric Investigation of Overload and Cyclic Fatigue Fracture Surface Morphologies in a Zr–Ti–Ni–Cu–Be Bulk Metallic Glass

Published online by Cambridge University Press:  31 January 2011

A. Tatschl
Affiliation:
Austrian Academy of Sciences, Erich-Schmid-Institut für Materialwissenschaft, Leoben, Austria
C. J. Gilbert
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, California 94720–1760
V. Schroeder
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, California 94720–1760
R. Pippan
Affiliation:
Austrian Academy of Sciences, Erich-Schmid-Institut für Materialwissenschaft, Leoben, Austria
R. O. Ritchie
Affiliation:
Department of Materials Science and Mineral Engineering, University of California, Berkeley, California 94720–1760
Get access

Abstract

Fracture surfaces of a recently developed Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 (at.%) bulk metallic glass were investigated using a three-dimensional surface reconstruction technique. Stereoscopic scanning electron microscopy of both fatigue and overload fracture surfaces permitted the creation of digital elevation models that were used to quantify important fracture surface features. Characterization of the surfaces revealed striations of nearly constant spacing on fatigue surfaces and a vein morphology characteristic in amorphous metals on the overload fracture surfaces. Additionally, at the onset of critical failure, crack-tip openings of ˜16 μm were observed that were consistent with measured values of fracture toughness. Interestingly, at the onset of fracture, deformation was confined to one side of the fracture plane, possibly because of the asymmetric emission of shear bands from the crack tip, consistent with the highly inhomogeneous nature of deformation in this alloy.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Inoue, A., Zhang, T., and Takeuchi, A., Appl. Phys. Lett. 71, 464 (1997).CrossRefGoogle Scholar
2.Peker, A. and Johnson, W.L., Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
3.He, Y., Schwarz, R.B., and Archuleta, J.I., Appl. Phys. Lett. 69, 1861 (1996).CrossRefGoogle Scholar
4.Johnson, W.L., Current Opinion in Solid State and Materials Science 1, 383 (1996).CrossRefGoogle Scholar
5.Klement, W., Willens, R.H., and Duwez, P., Nature 187, 869 (1960).CrossRefGoogle Scholar
6.Gilbert, C.J., Ritchie, R.O., and Johnson, W.L., Appl. Phys. Lett. 71, 476 (1997).CrossRefGoogle Scholar
7.Gilbert, C.J., Schroeder, V., and Ritchie, R.O., Metall. Mater. Trans. A 30A, 1739 (1999).CrossRefGoogle Scholar
8.Gilbert, C.J., Lippmann, J.M., and Ritchie, R.O., Scripta Mater. 38, 537 (1998).CrossRefGoogle Scholar
9.Schroeder, V., Gilbert, C.J., and Ritchie, R.O., Scripta Mater. 49, 1057 (1999).CrossRefGoogle Scholar
10.Piazzesi, G., J. Phys. E: Sci. Instrum. 6, 392 (1973).CrossRefGoogle Scholar
11.Krasowsky, A.J. and Stepanenko, V.A., Int. J. Fract. 15, 203 (1978).CrossRefGoogle Scholar
12.Stampfl, J., Semprimoschnig, C.O.A, and Kolednik, O., in 17. Tagung des Deutscher Verband für Materialforschung und-prüfung-Arbeiskreises Rastermikroskopie in der Materialprüfung, edited by Vetters, Hermann (DVM-Bericht 517, Germany, 1966), p. 179.Google Scholar
13.Kolednik, O., Practical Metallography 18, 562 (1981).CrossRefGoogle Scholar
14.Stampfl, J., Scherer, S., Berchthaler, M., Gruber, M., and Kolednik, O., Int. J. Fract. 78, 35 (1996).CrossRefGoogle Scholar
15.Stampfl, J., Scherer, S., Gruber, M., and Kolednik, O., Appl. Phys. A 63, 341 (1996).CrossRefGoogle Scholar
16.Pampillo, C.A. and Reimschusell, A.C., J. Mater. Sci. 9, 718 (1974).CrossRefGoogle Scholar
17.Frankot, R.T., Hensley, S., Shaffer, S., in Proceedings of the International Geoscience and Remote Sensing Symposium (IEEE, New York, 1994), Vol. 2, p. 1151.Google Scholar
18.Gilbert, C.J., Ager, J.W. III, Schroeder, V., Lloyd, J.P., Graham, J.R., and Ritchie, R.O., Appl. Phys. Lett. 74, 3809 (1999).CrossRefGoogle Scholar
19.Bruck, H.A., Rosakis, A.J., and Johnson, W.L., J. Mater. Res. 11, 503 (1996).CrossRefGoogle Scholar
20.Pampillo, C.A. and Reimschuessel, A.C., J. Mater. Sci. 9, 718 (1974).CrossRefGoogle Scholar
21.Argon, A.S. and Salama, M., Mater. Sci. Eng. 23, 219 (1976).CrossRefGoogle Scholar
22.Davidson, D.L. and Lankford, J., Int. Mater. Rev. 37, 45 (1992).CrossRefGoogle Scholar
23.Riemelmoser, F.O., Pippan, R., and Stüwe, H.P., Acta Mater. 46, 1793 (1998).CrossRefGoogle Scholar
24.Shih, C.F., J. Mech. Phys. Sol. 29, 305 (1981).CrossRefGoogle Scholar
25.Bruck, H.A., Rosakis, A.J., and Johnson, W.L., J. Mater. Res. 11, 503 (1996).CrossRefGoogle Scholar
26.Liu, C.T., Heatherly, L., Easton, D.S., Carmichael, C.A., Schneibel, J.H., Chen, C.H., Wright, J.L., Yoo, M.H., Horton, J.A., and Inoue, A., Metall. Mater. Trans. A 29A, 1811 (1998).CrossRefGoogle Scholar
27.Flores, K.M. and Dauskardt, R.H., J. Mater. Res. 14, 638 (1999).CrossRefGoogle Scholar