Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-31T04:29:25.683Z Has data issue: false hasContentIssue false

Synthesis of bimodally porous titania powders by hydrolysis of titanium tetraisopropoxide

Published online by Cambridge University Press:  31 January 2011

Ki Chang Song
Affiliation:
Institute of Process Engineering, Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092 Zurich, Switzerland
Sotiris E. Pratsinis*
Affiliation:
Institute of Process Engineering, Swiss Federal Institute of Technology, ETH-Zentrum, CH-8092 Zurich, Switzerland
*
b)Address all correspondence to this author. e-mail: pratsinis@ivuk.mavt.ethz.ch
Get access

Abstract

Bimodally porous titania powders with controlled phase composition and porosity were made by hydrolysis of titanium tetraisopropoxide (TTIP) and calcination. The extent of calcination was followed by thermogravimetric differential thermal analysis and Fourier transform infrared spectroscopy. The specific surface area (SSA) of the powders ranged from 10 to 500 m2/g as determined by nitrogen adsorption. The SSA increased by decreasing either the water concentration during hydrolysis or the calcination temperature. The pore size distribution was bimodal with fine intraparticle pore diameters at 1–6 nm and larger interparticle pore diameters at 30–120 nm as determined by nitrogen adsorption isotherms. The particle phase composition as determined by x-ray diffraction ranged from amorphous to crystalline anatase and rutile largely proportional to the calcination temperature and to a lesser extent on the initial H2O/TTIP molar ratio.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mezey, E.J., Vapor Deposition (Wiley, New York, 1966), p. 423.Google Scholar
2.Barringer, E.A. and Bowen, H.K., Langmuir 1, 414 (1985).CrossRefGoogle Scholar
3.Akhtar, M.K., Pratsinis, S.E., and Mastrangelo, S.V.R, J. Am. Ceram. Soc. 75, 3408 (1992).CrossRefGoogle Scholar
4.Fotou, G.P., Vemury, S., and Pratsinis, S.E., Chem. Eng. Sci. 49, 4939 (1994).CrossRefGoogle Scholar
5.O'Regan, B. and Graetzel, M., Nature 353, 737 (1991).CrossRefGoogle Scholar
6.Gesenhues, U. and Rentschler, T., J. Solid State Chem. 143, 210 (1999).CrossRefGoogle Scholar
7.Kato, A., Takeshima, Y., and Katatae, Y., in Processing Science of Advanced Ceramics, edited by Aksay, I.A., McVay, G.L., and Ulrich, D.R. (Mater. Res. Soc. Symp. Proc. 155, Pittsburgh, PA, 1989), p. 13.Google Scholar
8.Pratsinis, S.E., Zhu, W., and Vemury, S., Powder Technol. 86, 87 (1996).CrossRefGoogle Scholar
9.Kirkbir, F. and Komiyama, H., Chem. Lett. 5, 791 (1988).CrossRefGoogle Scholar
10.Morishige, K., Kanno, F., Ogawara, S., and Sasaki, S., J. Phys. Chem. 89, 4404 (1985).CrossRefGoogle Scholar
11.Jean, J.H. and Ring, T.A., Langmuir 2, 251 (1986).CrossRefGoogle Scholar
12.Koebrugge, G.W., Winnubst, L., and Burggraaf, A.J., J. Mater. Chem. 3, 1095 (1993).CrossRefGoogle Scholar
13.Kallala, M., Sanchez, C., and Cabrane, B., Phys. Rev. E 48, 3692 (1993).CrossRefGoogle Scholar
14.Yoldas, B.E., J. Mater. Sci. 21, 1087 (1986).CrossRefGoogle Scholar
15.Ding, X.Z., Qi, Z.Z., and He, Y.Z., J. Mater. Sci. Lett. 14, 21 (1995).CrossRefGoogle Scholar
16.Sasamoto, T., Enomoto, S., Shimoda, Z., and Saeki, Y., J. Ceram. Soc. Jpn. 101, 226 (1993).CrossRefGoogle Scholar
17.Kato, K., Chem. Soc. Jpn. 65, 34 (1992).CrossRefGoogle Scholar
18.Sato, S., Oimatsu, S., Takahashi, R., Sodesawa, T., and Nozaki, F., Chem. Commun. 22, 2219 (1997).CrossRefGoogle Scholar
19.Brinker, C.J. and Scherer, G.W., Sol-Gel Science (Academic Press, San Diego, CA, 1990).Google Scholar
20.Yan, M.F. and Rhodes, W.W., Mater. Sci. Eng. 61, 59 (1983).CrossRefGoogle Scholar
21.Spurr, R.A. and Myers, H., Anal. Chem. 29, 760 (1957).CrossRefGoogle Scholar
22.Cullity, B.D., Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1978).Google Scholar
23.Sing, K.S.W, Everett, D.H., Haul, R.A.W, Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T., Pure Appl. Chem. 57, 603 (1985).CrossRefGoogle Scholar
24.Montoya, I.A., Viveros, T., Dominguez, J.M., Canales, L.A., and Schifter, I., Catal. Lett. 15, 207 (1992).CrossRefGoogle Scholar
25.Rubio, J., Oteo, J.L., Villegas, M., and Duran, P., J. Mater. Sci. 32, 643 (1997).CrossRefGoogle Scholar
26.Lopez, T., Sanchez, E., Bosch, P., Meas, Y., and Gomez, R., Mater. Chem. Phys. 32, 141 (1992).CrossRefGoogle Scholar
27.Farmer, V.C., Infrared Spectra of Minerals (Mineralogical Society, London, United Kingdom, 1974).CrossRefGoogle Scholar
28.Terabe, K., Kato, K., Miyazaki, H., Yamaguchi, S., Imai, A., and Iguchi, Y., J. Mater. Sci. 29, 1617 (1994).CrossRefGoogle Scholar
29.Jang, H.D., AIChE J. 43, 2704 (1997).CrossRefGoogle Scholar
30.Ding, X.Z., Liu, X.H., and He, Y.Z., J. Mater. Sci. Lett. 15, 1789 (1996).CrossRefGoogle Scholar
31.Kumar, K-N.P, Keizer, K., and Burggraaf, A.J., J. Mater. Chem. 3, 1141 (1993).CrossRefGoogle Scholar
32.Sing, K.S.W, Everett, D.H., Haul, R.A.W, Moscou, L., Pierotti, R.A., Rouquerol, J., and Siemieniewska, T., Pure Appl. Chem. 57, 603 (1985).CrossRefGoogle Scholar
33.Gregg, S.J. and Sing, K.S.W, Adsorption, Surface Area and Porosity (Academic Press, London, United Kingdom, 1982).Google Scholar
34.Kumar, K-N.P, Kumar, J., and Keizer, K., J. Am. Ceram. Soc. 77, 1396 (1994).CrossRefGoogle Scholar