Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-06-16T06:08:24.325Z Has data issue: false hasContentIssue false

The synthesis of NbSi2 by mechanical alloying

Published online by Cambridge University Press:  31 January 2011

Taiping Lou
Affiliation:
National Key Lab for RSA, Institute of Metal Research, Academia Sinica, Shenyang 110015, People's Republic of China
Guojiang Fan
Affiliation:
National Key Lab for RSA, Institute of Metal Research, Academia Sinica, Shenyang 110015, People's Republic of China
Bingzhe Ding
Affiliation:
National Key Lab for RSA, Institute of Metal Research, Academia Sinica, Shenyang 110015, People's Republic of China
Zhuangqi Hu
Affiliation:
National Key Lab for RSA, Institute of Metal Research, Academia Sinica, Shenyang 110015, People's Republic of China
Get access

Abstract

The stoichiometric intermetallic compound NbSi2 has been synthesized by mechanical alloying (MA) elemental Nb and Si powders. The alloying process has been investigated by means of x-ray diffraction (XRD) and differential scanning calorimetry (DSC). It was found that the formation of the Nb2Si intermetallic compound occurs abruptly after 65 min of milling without any interruptions during the alloying process. However, short interruptions at a 5 min interval during ball milling result in a gradual reaction for the formation of the NbSi2 compound as well as a new metastable bcc structured solid solution. We conclude that the temperature rise during mechanical alloying plays an important role in initiating the abrupt reaction after an incubation milling time.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Fecht, H. J., Han, G., Fu, Z., and Johnson, W. L., J. Appl. Phys. 67, 1744 (1990).CrossRefGoogle Scholar
2.Morris, D. G. and Morris, M. A., Mater. Sci. Eng. A134, 1481 (1991).Google Scholar
3.Koch, C. C., Calvin, O. B., Mckamey, C. G., and Scarbrough, J. O., Appl. Phys. Lett. 43, 1017 (1983).CrossRefGoogle Scholar
4.Schultz, L. and Hellstern, E., in Science and Technology of Rapidly Quenched Alloys, edited by Tenhover, M., Johnson, W. L., and Tanner, L. E. (Mater. Res. Soc. Symp. Proc. 80, Pittsburgh, PA, 1987), p. 3.Google Scholar
5.Dermott, B. T. and Koch, C. C., Scripta Metall. 20, 669 (1986).CrossRefGoogle Scholar
6.Hellstern, E., Fecht, H. J., Fu, Z., and Johnson, W. L., J. Mater. Res. 4, 1292 (1989).CrossRefGoogle Scholar
7.Echert, J., Schulz, L., and Urban, K., Z. Metallk. 81, 862 (1990).Google Scholar
8.Kajuch, J., Rigney, J. D., and Lewandowski, J. J., Mater. Sci. Eng. A155, 59 (1992).CrossRefGoogle Scholar
9.Bokhonov, B., Ivanov, E., and Boldyrev, V., J. Alloys Comp. 199, 125 (1993).CrossRefGoogle Scholar
10.Kajuch, J., Rigney, J. D., and Lewandowski, J. J., Mater. Sci. Eng. A155, 59 (1992).CrossRefGoogle Scholar
11.Liu, L., Padella, F., Guo, W., and Magini, M., Acta Metall. Mater. 43, 3755 (1995).CrossRefGoogle Scholar
12.Terao, N., Jpn. J. Appl. Phys. 2, 156 (1963).CrossRefGoogle Scholar
13.Atzmon, M., Phys. Rev. Lett. 64, 487 (1990).CrossRefGoogle Scholar
14.Patankar, S. N., Xiao, S-Q., Lewandowski, J. J., and Heuer, A. H., J. Mater. Res. 8, 1311 (1993).Google Scholar
15.Liu, Z. G., Guo, J. T., Ye, L. L., Li, G. S., and Hu, Z. Q., Appl. Phys. Lett. 65, 2666 (1994).CrossRefGoogle Scholar
16.Liu, L. and Dong, Y. D., Nanostruct. Mater. 2, 465 (1993).Google Scholar
17.Lou, T. P., Fan, G. J., Ding, B. Z., and Hu, Z. Q., unpublished results.Google Scholar
18.Niessen, A. K., de Boer, F. R., Boom, R., de Chatel, P. F., Mattens, W. C. M., and Miedema, A. R., CALPHAD. 7, 51 (1983).CrossRefGoogle Scholar
19.Deevi, S. C., J. Mater. Sci. 26, 3343 (1991).CrossRefGoogle Scholar
20.Ma, E., Pagan, J., Cranford, G., and Atzmon, M., J. Mater. Res. 8, 1836 (1993).CrossRefGoogle Scholar