Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-12T13:19:33.457Z Has data issue: false hasContentIssue false

Synthesis, structure and mechanical properties of ice-templated tungsten foams

Published online by Cambridge University Press:  04 March 2016

André Röthlisberger
Affiliation:
Mechanical Integrity of Energy Systems, Swiss Federal Laboratories for Materials Science and Technology, EMPA, CH-8600 Dübendorf, Switzerland; and Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, CH-8093 Zürich, Switzerland
Sandra Häberli
Affiliation:
Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, CH-8093 Zürich, Switzerland
Ralph Spolenak
Affiliation:
Laboratory for Nanometallurgy, Department of Materials, ETH Zürich, CH-8093 Zürich, Switzerland
David C. Dunand*
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
*
a)Address all correspondence to this author. e-mail: dunand@northwestern.edu
Get access

Abstract

Tungsten foams with directional, controlled porosity were created by directional freeze-casting of aqueous WO3 powder slurries, subsequent freeze-drying by ice sublimation, followed by reduction and sintering under flowing hydrogen gas to form metallic tungsten. Addition of 0.51 wt% NiO to the WO3 slurry improved the densification of tungsten cell walls significantly at sintering temperatures above 1250 °C, yielding densely sintered W–0.5 wt% Ni walls with a small fraction of closed porosity (<5%). Slurries with powder volume fractions of 15–35 vol% were solidified and upon reduction and sintering the open porosity ranges from 27–66% following a linear relation with slurry solid volume fraction. By varying casting temperature and powder volume fraction, the wall thickness of the tungsten foams was controlled in the range of 10–50 µm. Uniaxial compressive testing at 25 and 400 °C, below and above the brittle-to-ductile-transition temperature of W, yields compressive strength values of 70–96 MPa (25 °C) and 92–130 MPa (400 °C).

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Twigg, M.V. and Richardson, J.T.: Fundamentals and applications of structured ceramic foam catalysts. Ind. Eng. Chem. Res. 46(12), 4166 (2007).Google Scholar
Huang, Z-F., Song, J., Pan, L., Zhang, X., Wang, L., and Zou, J-J.: Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv. Mater. 27(36), 5309 (2015).Google Scholar
Hamidi, A.G., Arabi, H., and Rastegari, S.: Tungsten–copper composite production by activated sintering and infiltration. Int. J. Refract. Hard Met. 29(4), 538 (2011).Google Scholar
Hamidi, A.G., Arabi, H., and Rastegari, S.: A feasibility study of W-Cu composites production by high pressure compression of tungsten powder. Int. J. Refract. Hard Met. 29(1), 123 (2011).CrossRefGoogle Scholar
Behrens, V. and Weise, W.: Contact materials. In Landolt-Börnstein—Group VIII Advanced Materials and Technologies (Powder Metallurgy Data), Vol. 2A1, Beiss, P., Ruthardt, R., and Warlimont, H. eds.; Springer-Verlag Berlin Heidelberg: Berlin, 2003.Google Scholar
Lassner, E. and Schubert, W-D.: Tungsten alloys. In Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Lassner, E. and Schubert, W-D., eds. (Springer: New York, 1999); pp. 254282.Google Scholar
Marafona, J. and Wykes, C.: A new method of optimising material removal rate using EDM with copper–tungsten electrodes. Int. J. Mach. Tool Manuf. 40(2), 153 (2000).Google Scholar
Banhart, J.: Manufacture, characterisation and application of cellular metals and metal foams. Prog. Mater. Sci. 46(6), 559 (2001).Google Scholar
Lefebvre, L.P., Banhart, J., and Dunand, D.C.: Porous metals and metallic foams: Current status and recent developments. Adv. Eng. Mater. 10(9), 775 (2008).CrossRefGoogle Scholar
Selcuk, C. and Wood, J.V.: Reactive sintering of porous tungsten: A cost effective sustainable technique for the manufacturing of high current density cathodes to be used in flashlamps. J. Mater. Process. Technol. 170(1–2), 471 (2005).CrossRefGoogle Scholar
Lassner, E. and Schubert, W-D.: Industrial production. In Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Springer: New York, 1999; pp. 246247.Google Scholar
Soldera, F., Lasagni, A., Mucklich, F., Kaiser, T., and Hrastnik, K.: Determination of the cathode erosion and temperature for the phases of high voltage discharges using FEM simulations. Comput. Mater. Sci. 32(1), 123 (2005).Google Scholar
Deville, S.: Freeze-casting of porous ceramics: A review of current achievements and issues. Adv. Eng. Mater. 10(3), 155 (2008).Google Scholar
Chino, Y. and Dunand, D.C.: Directionally freeze-cast titanium foam with aligned, elongated pores. Acta Mater. 56(1), 105 (2008).Google Scholar
Ramos, A.I.C. and Dunand, D.C.: Preparation and characterization of directionally freeze-cast copper foams. Metals 2(3), 265 (2012).Google Scholar
Li, J.C. and Dunand, D.C.: Mechanical properties of directionally freeze-cast titanium foams. Acta Mater. 59(1), 146 (2011).Google Scholar
Chino, Y. and Dunand, D.C.: Titanium foams with aligned, elongated pores produced by freeze casting. In MetFoam 2007—Proceedings of the 5th International Conference on Porous Metals and Metallic Foam (DEStech Publications Inc., Lancaster, 2008); p. 263.Google Scholar
Fukushima, M. and Yoshizawa, Y.: Fabrication of highly porous nickel with oriented micrometer-sized cylindrical pores by gelation freezing method. Mater. Lett. 153, 99 (2015).CrossRefGoogle Scholar
Driscoll, D., Weisenstein, A.J., and Sofie, S.W.: Electrical and flexural anisotropy in freeze tape cast stainless steel porous substrates. Mat. Lett. 65(23–24), 3433 (2011).Google Scholar
Pekor, C. and Nettleship, I.: The effect of the molecular weight of polyethylene glycol on the microstructure of freeze-cast alumina. Ceram. Int. 40(7), 9171 (2014).Google Scholar
Pekor, C.M., Kisa, P., and Nettleship, I.: Effect of polyethylene glycol on the microstructure of freeze-cast alumina. J. Am. Ceram. Soc. 91(10), 3185 (2008).CrossRefGoogle Scholar
Oh, S-T., Kim, Y.D., and Suk, M-J.: Freeze drying for porous Mo with different sublimable vehicle compositions in the camphor-naphthalene system. Mater. Lett. 139, 268 (2015).Google Scholar
Lee, Y-S. and Oh, S-T.: Fabrication and properties of porous tungsten by freeze-drying process. Korean J. Mater. Res. 21(9), 520 (2011).Google Scholar
Toth, I.J. and Lockington, N.A.: The kinetics of metallic activation sintering of tungsten. J. Less-Common Met. 12(5), 353 (1967).Google Scholar
Corti, W.: Sintering aids in powder metallurgy. Platinum Met. Rev. 30(4), 184 (1986).CrossRefGoogle Scholar
Laarz, E. and Bergstrom, L.: Dispersing WC–Co powders in aqueous media with polyethylenimine. Int. J. Refract. Hard Met. 18(6), 281 (2000).CrossRefGoogle Scholar
Subcommittee C08.03: ASTM C20-00 Standard Test Methods for Apparent Porosity, Water Absorption, Apparent Specific Gravity and Bulk Density of Burned Refractory Brick and Shapes by Boiling Water (ASTM International, West Conshohocken, 2015).Google Scholar
Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).Google Scholar
Lassner, E. and Schubert, W-D.: The element tungsten. In Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Lassner, E. and Schubert, W-D., eds. (Springer: New York, 1999); pp. 160.Google Scholar
Giannattasio, A., Yao, Z., Tarleton, E., and Roberts, S.G.: Brittle-ductile transitions in polycrystalline tungsten. Philos. Mag. 90(30), 3947 (2010).Google Scholar
Giannattasio, A. and Roberts, S.G.: Strain-rate dependence of the brittle-to-ductile transition temperature in tungsten. Philos. Mag. 87(16–17), 2589 (2007).Google Scholar
Lassner, E. and Schubert, W-D.: Industrial production. In Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Lassner, E. and Schubert, W-D., eds. (Springer: New York, 1999); p. 235.CrossRefGoogle Scholar
Dunand, D.C.: Processing of titanium foams. Adv. Eng. Mater. 6(6), 369 (2004).Google Scholar
Lemmon, E.W. and Harvey, A.H.: Thermophysical properties of water and steam. In CRC Handbook of Chemistry and Physics, Haynes, W.M. ed.; Taylor & Francis: New York, 2015; pp. 6–1.Google Scholar
King, E.G., Christensen, A.U., and Weller, W.W.: Thermodynamics of Some Oxides of Molybdenum and Tungsten (U.S. Department of the Interior, Bureau of Mines, Washington, D.C., 1960).Google Scholar
Harvey, A.H.: Properties of ice and supercooled water. In CRC Handbook of Chemistry and Physics, Haynes, W.M. ed.; Taylor & Francis: New York, 2015); pp. 612.Google Scholar
Physical constants of inorganic compounds. In CRC Handbook of Chemistry and Physics, Haynes, W.M. ed.; Taylor & Francis: New York, 2015; pp. 497.Google Scholar
Deville, S., Saiz, E., Nalla, R.K., and Tomsia, A.P.: Freezing as a path to build complex composites. Science 311(5760), 515 (2006).CrossRefGoogle ScholarPubMed
Shanti, N.O., Araki, K., and Halloran, J.W.: Particle redistribution during dendritic solidification of particle suspensions. J. Am. Ceram. Soc. 89(8), 2444 (2006).Google Scholar
Liu, G., Zhang, D., Meggs, C., and Button, T.W.: Porous Al2O3-ZrO2 composites fabricated by an ice template method. Scr. Mater. 62(7), 466 (2010).CrossRefGoogle Scholar
Zhang, H.F., Hussain, I., Brust, M., Butler, M.F., Rannard, S.P., and Cooper, A.I.: Aligned two- and three-dimensional structures by directional freezing of polymers and nanoparticles. Nat. Mater. 4(10), 787 (2005).Google Scholar
Predel, B.: Binary phase diagram Ni–W. In Landolt-Börnstein—Group IV Physical Chemistry 5I (Ni-Np—Pt-Zr), Madelung, O. ed.; Springer-Verlag Berlin Heidelberg: Berlin, 1998.Google Scholar
Brophy, J.H., Hayden, H.W., and Wulff, J.: Final stages of densification in nickel-tungsten compacts. Trans. Met Soc. AIME 224(4), 797 (1962).Google Scholar
Gupta, V.K., Yoon, D.H., Meyer, H.M., and Luo, J.: Thin intergranular films and solid-state activated sintering in nickel-doped tungsten. Acta Mater. 55(9), 3131 (2007).Google Scholar
Mehrer, H., Stolica, N., and Stolwijk, N.A.: Chromium group metals. In Landolt-Börnstein—Group III Condensed Matter (Diffusion in Solid Metals and Alloys), Vol. 26, Mehrer, H. ed.; Springer-Verlag Berlin Heidelberg: Berlin, 1990.Google Scholar
LeClaire, A.D. and Neumann, G.: Figs. 27–41. In Landolt-Börnstein—Group III Condensed Matter (Diffusion in Solid Metals and Alloys), Vol. 26, Mehrer, H. ed.; Springer-Verlag Berlin Heidelberg: Berlin, 1990.Google Scholar
Murch, G.E. and Bruff, C.M.: Nb-V—U-Zr. In Landolt-Börnstein—Group III Condensed Matter (Diffusion in solid metals and Alloys), Vol. 26, Mehrer, H. ed.; Springer-Verlag Berlin Heidelberg: Berlin, 1990.Google Scholar
Lichtner, A., Roussel, D., Jauffrès, D., Martin, C.L. and Bordia, R.K.: Effect of macropore anisotropy on the mechanical response of hierarchically porous ceramics. J Am Ceram Soc., doi: 10.1111/jace.1400 (2015).Google Scholar
Peuster, M., Kaese, V., Wuensch, G., von Schnakenburg, C., Niemeyer, M., Fink, C., Haferkamp, H., and Hausdorf, G.: Composition and in vitro biocompatibility of corroding tungsten coils. J. Biomed. Mater. Res., Part B 65(1), 211 (2003).Google Scholar
Yue, K., Luo, W.Y., Dong, X.Q., Wang, C.S., Wu, G.H., Jiang, M.W., and Zha, Y.Z.: A new lead-free radiation shielding material for radiotherapy. Radiat. Prot. Dosim. 133(4), 256 (2009).Google Scholar
Lassner, E. and Schubert, W-D.: Tungsten in catalysis. In Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and chemical Compounds, Lassner, E. and Schubert, W-D., eds. (Springer: New York, 1999); p. 365.Google Scholar
JCPDS: PDF 00-004-0806, International Center for Diffraction Data ICDD, 2004.Google Scholar
JCPDS: PDF 01-083-0950, International Center for Diffraction Data ICDD, 2004.Google Scholar