Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-20T05:40:50.765Z Has data issue: false hasContentIssue false

Temperature dependence of mechanical properties in ultrathin Au films with and without passivation

Published online by Cambridge University Press:  31 January 2011

Patric A. Gruber
Affiliation:
Universität Stuttgart, Institute of Physical Metallurgy, D-70569 Stuttgart, Germany
Sven Olliges
Affiliation:
Laboratory for Nanometallurgy, Department of Materials, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zurich, Switzerland
Eduard Arzt
Affiliation:
Universität Stuttgart, Institute of Physical Metallurgy, D-70569 Stuttgart, Germany; Max Planck Institute for Metals Research, D-70569 Stuttgart, Germany; and Leibniz Institute for New Materials (INM), D-66123 Saarbrücken, Germany
Ralph Spolenak*
Affiliation:
Laboratory for Nanometallurgy, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
*
b)Address all correspondence to this author. e-mail: ralph.spolenak@mat.ethz.ch
Get access

Abstract

Temperature and film thickness are expected to have an influence on the mechanical properties of thin films. However, mechanical testing of ultrathin metallic films at elevated temperatures is difficult, and few experiments have been conducted to date. Here, we present a systematic study of the mechanical properties of 80–500-nm-thick polycrystalline Au films with and without SiNx passivation layers in the temperature range from 123 to 473 K. The films were tested by a novel synchrotron-based tensile testing technique. Pure Au films showed strong temperature dependence above 373 K, which may be explained by diffusional creep. In contrast, passivated samples appeared to deform by thermally activated dislocation glide. The observed activation energies for both mechanisms are considerably lower than those for the bulk material, indicating that concomitant stress relaxation mechanisms are more pronounced in the thin film geometry.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Arzt, E., Dehm, G., Gumbsch, P., Kraft, O.Weiss, D.: Interface controlled plasticity in metals: Dispersion hardening and thin film deformation. Prog. Mater. Sci. 46, 283 2001CrossRefGoogle Scholar
2Dehm, G., Balk, T.J., von Blanckenhagen, B., Gumbsch, P.Arzt, E.: Dislocation dynamics in sub-micron confinement: Recent progress in Cu thin film plasticity. Z. Metallkd. 93, 383 2002CrossRefGoogle Scholar
3Nix, W.D.: Mechanical properties of thin films. Metall. Trans. A 20, 2217 1989CrossRefGoogle Scholar
4Thompson, C.V.: The yield stress of polycrystalline thin films. J. Mater. Res. 8, 237 1993CrossRefGoogle Scholar
5Nix, W.D.: Yielding and strain hardening of thin metal films on substrates. Scr. Mater. 39, 545 1998CrossRefGoogle Scholar
6von Blanckenhagen, B., Gumbsch, P.Arzt, E.: Dislocation sources in discrete dislocation simulations of thin-film plasticity and the Hall–Petch relation. Modell. Simul. Mater. Sci. Eng. 9, 157 2001CrossRefGoogle Scholar
7Pant, P., Schwarz, K.W.Baker, S.P.: Dislocation interactions in thin fcc metal films. Acta Mater. 51, 3243 2003CrossRefGoogle Scholar
8Needleman, A., Nicola, L., Xiang, Y., Vlassak, J.J.Van der Giessen, E.: Plastic deformation of freestanding thin films: Experiments and modeling. J. Mech. Phys. Solids 54, 2089 2006Google Scholar
9Gruber, P.A., Böhm, J., Onuseit, F., Wanner, A., Spolenak, R.Arzt, E.: Size effects on yield strength and strain hardening for ultrathin Cu films with and without passivation: A study by synchrotron and bulge test techniques. Acta Mater 56, 2318 2008CrossRefGoogle Scholar
10Gibbs, G.B.: Diffusion creep of a thin foil. Philos. Mag. 13, 589 1966CrossRefGoogle Scholar
11Gao, H., Zhang, L., Nix, W.D., Thompson, C.V.Arzt, E.: Crack-like grain-boundary diffusion wedges in thin metal films. Acta Mater. 47, 2865 1999CrossRefGoogle Scholar
12Vinci, R.P., Zielinski, E.M.Bravman, J.C.: Thermal strain and stress in copper thin films. Thin Solid Films 262, 142 1995CrossRefGoogle Scholar
13Keller, R., Baker, S.P.Arzt, E.: Quantitative analysis of strengthening mechanisms in thin Cu films: Effects of film thickness, grain size, and passivation. J. Mater. Res. 13, 1307 1998CrossRefGoogle Scholar
14Weiss, D., Gao, H.Arzt, E.: Constrained diffusional creep in UHV-produced copper thin films. Acta Mater. 49, 2395 2001CrossRefGoogle Scholar
15Balk, T.J., Dehm, G.Arzt, E.: Parallel glide: Unexpected dislocation motion parallel to the substrate in ultrathin copper films. Acta Mater. 51, 4471 2003CrossRefGoogle Scholar
16Sauter, L.: Microstructural and film thickness effects on the thermomechanical behavior of thin Au films. Ph.D. Thesis, University of Stuttgart, Stuttgart, Germany,2006Google Scholar
17Kobrinsky, M.J.Thompson, C.V.: Activation volume for inelastic deformation in polycrystalline Ag thin films. Acta Mater. 48, 625 2000CrossRefGoogle Scholar
18Kobrinsky, M.J., Dehm, G., Thompson, C.V.Arzt, E.: Effects of thickness on the characteristic length scale of dislocation plasticity in Ag thin films. Acta Mater. 49, 3597 2001CrossRefGoogle Scholar
19Lucas, B.N.Oliver, W.C.: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30, 601 1999CrossRefGoogle Scholar
20Brotzen, F.R., Rosenmayer, C.T., Cofer, C.G.Gale, R.J.: Creep of thin metallic films. Vacuum 41, 1287 1990CrossRefGoogle Scholar
21Emery, R., Simons, C., Mazin, B.Povirk, G.L.: High temperature tensile behavior of free-standing gold films in Thin-Films— Stresses and Mechanical Properties VII,, edited by R.C. Cammarata, M. Nastasi, E.P. Busso, and W.C. Oliver (Mater. Res. Soc. Symp. Proc. 505, Warrendale, PA, 1998) pp. 57–62CrossRefGoogle Scholar
22Haque, M.A.Saif, M.T.A.: Thermo-mechanical properties of nano-scale freestanding aluminum films. Thin Solid Films 484, 364 2005CrossRefGoogle Scholar
23Hyun, S., Brown, W.L.Vinci, R.P.: Thickness and temperature dependence of stress relaxation in nanoscale aluminum films. Appl. Phys. Lett. 83, 4411 2003CrossRefGoogle Scholar
24Kalkman, A.J., Verbruggen, A.H.Janssen, G.: High-temperature bulge-test setup for mechanical testing of free-standing thin films. Rev. Sci. Instrum. 74, 1383 2003CrossRefGoogle Scholar
25Cieslar, M., Oliva, V., Karimi, A.Martin, J.L.: Plasticity of thin Al films as a function of temperature. Mater. Sci. Eng., A 387-389, 734 2004CrossRefGoogle Scholar
26Böhm, J., Gruber, P., Spolenak, R., Stierle, A., Wanner, A.Arzt, E.: Tensile testing of ultrathin polycrystalline films: A synchrotron-based technique. Rev. Sci. Instrum. 75, 1110 2004CrossRefGoogle Scholar
27Gruber, P., Böhm, J., Wanner, A., Sauter, L., Spolenak, R.Arzt, E.: Size effect on crack formation in Cu/Ta and Ta/Cu/Ta thin film systems in Nanoscale Materials and Modeling– Relations Among Processing, Microstructure and Mechanical Properties,, edited by P.M. Anderson, T. Foecke, A. Misra, and R.E. Rudd (Mater. Res. Soc. Symp. Proc. 821, Warrendale, PA, 2004), P2.7CrossRefGoogle Scholar
28Gruber, P.A., Arzt, E.Spolenak, R.: Brittle-to-ductile transition in ultrathin Ta/Cu film systems. J. Mater. Res. (submitted)Google Scholar
29Beuth, J.L. Jr.: Cracking of thin bonded films in residual tension. Int. J. Solids Struct. 29, 1657 1992CrossRefGoogle Scholar
30Xia, Z.C.Hutchinson, J.W.: Crack patterns in thin films. J. Mech. Phys. Solids 48, 1107 2000CrossRefGoogle Scholar
31Li, T., Huang, Z.Y., Xi, Z.C., Lacour, S.P., Wagner, S.Suo, Z.: Delocalizing strain in a thin metal film on a polymer substrate. Mech. Mater. 37, 261 2005CrossRefGoogle Scholar
32Xiang, Y., Li, T., Suo, Z.G.Vlassak, J.J.: High ductility of a metal film adherent on a polymer substrate. Appl. Phys. Lett. 87, 61910 2005CrossRefGoogle Scholar
33Frost, H.J., Ashby, M.F.Deormation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics Pergamon Press Oxford, UK 1982Google Scholar
34Gruber, P.A., Solenthaler, C., Arzt, E.Spolenak, R.: Strong single-crystalline Au films tested by a new synchrotron technique. Acta Mater. 56, 1876 2008CrossRefGoogle Scholar
35Oh, S.H., Legros, M., Kiener, D., Gruber, P.Dehm, G.: In situ TEM straining of single crystal Au films on polyimide: Change of deformation mechanisms at the nanoscale. Acta Mater. 55, 5558 2007CrossRefGoogle Scholar
36Dehm, G., Weiss, D.Arzt, E.: In situ transmission-electron-microscopy study of thermal-stress-induced dislocations in a thin Cu film constrained by a Si substrate. Mater. Sci. Eng., A 309-310, 468 2001CrossRefGoogle Scholar
37von Blanckenhagen, B., Gumbsch, P.Arzt, E.: Dislocation sources and the flow stress of polycrystalline thin metal films. Philos. Mag. Lett. 83, 1 2003CrossRefGoogle Scholar
38Gianola, D.S., Van Petegem, S., Legros, M., Brandstetter, S., Van Swygenhoven, H.Hemker, K.J.: Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films. Acta Mater. 54, 2253 2006CrossRefGoogle Scholar
39Thouless, M.D.: Effect of surface diffusion on the creep of thin films and sintered arrays of particles. Acta Metall. Mater. 41, 1057 1993CrossRefGoogle Scholar
40Kobrinsky, M.J.Thompson, C.V.: The thickness dependence of the flow stress of capped and uncapped polycrystalline Ag thin films. Appl. Phys. Lett. 73, 2429 1998CrossRefGoogle Scholar
41Gangulee, A.Dheurle, F.M.: Activation-energy for electromigration and grain-boundary self-diffusion in gold. Scr. Metall. 7, 1027 1973CrossRefGoogle Scholar
42Gust, W., Mayer, S., Bogel, A.Predel, B.: Generalized representation of grain-boundary self-diffusion data. J. Phys. E 46, 537 1985Google Scholar
43Horvath, J., Birringer, R.Gleiter, H.: Diffusion in nanocrystalline material. Solid State Commun. 62, 319 1987CrossRefGoogle Scholar
44Birringer, R., Hahn, H., Hofler, H., Karch, J.Gleiter, H.: Diffusion and low temperature deformation by diffusional creep of nanocrystalline materials. Diffusion and defect data—Solid state data. Part A. Defect and Diffusion Forum 59, 17 1988CrossRefGoogle Scholar
45Wurschum, R., Herth, S.Brossmann, U.: Diffusion in nanocrystalline metals and alloys—A status report. Adv. Eng. Mater. 5, 365 2003CrossRefGoogle Scholar
46Raj, R.Ashby, M.F.: On grain boundary sliding and diffusional creep. Metall. Trans. 2, 1113 1971CrossRefGoogle Scholar