Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-12T01:58:25.563Z Has data issue: false hasContentIssue false

Thermoelectric properties of CaMnO3 films obtained by soft chemistry synthesis

Published online by Cambridge University Press:  14 March 2012

Dimas S. Alfaruq
Affiliation:
Solid State Chemistry and Catalysis, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Duebendorf, Switzerland
Eugenio H. Otal
Affiliation:
Solid State Chemistry and Catalysis, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Duebendorf, Switzerland
Myriam H. Aguirre
Affiliation:
Solid State Chemistry and Catalysis, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Duebendorf, Switzerland
Sascha Populoh
Affiliation:
Solid State Chemistry and Catalysis, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Duebendorf, Switzerland
Anke Weidenkaff*
Affiliation:
Solid State Chemistry and Catalysis, Empa, Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Duebendorf, Switzerland
*
a)Address all correspondence to this author. e-mail: anke.weidenkaff@empa.ch
Get access

Abstract

Polycrystalline randomly oriented CaMnO3 films were successfully deposited on sapphire substrates by soft chemistry methods. The precursor solutions were obtained from a mixture of metal acetates dissolved in acids. The Seebeck coefficient and the electrical resistivity were measured in the temperature range of 300 K < T < 1000 K. Modifications of thermal annealing procedures during the deposition of precursor layers resulted in different power factor values. Thermal annealing of CaMnO3 films at 900 °C for 48 h after four-layer depositions (route A) resulted in a pure perovskite phase with higher power factor and electrical resistivity than four-layer depositions of films annealed layer by layer at 900 °C for 48 h (route B). The studied films have negative Seebeck coefficients indicative of n-type conduction and electrical resistivities showing semiconducting behavior.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Rowe, D.M.: Thermoelectrics Handbook—Macro to Nano (CRC Press/Taylor & Francis Group, Boca Raton, 2006), pp. 35-1.Google Scholar
2.Wiebe, C.R., Greedan, J.E., Gardner, J.S., Zeng, Z., and Greenblatt, M.: Charge and magnetic ordering in the electron-doped magnetoresistive materials CaMnO3-δ (δ = 0.06; 0.11). Phys. Rev. B 64, 644211 (2001).CrossRefGoogle Scholar
3.Rao, C.N.R., Cheetham, A.K., and Mahesh, R.: Giant magnetoresistance and related properties of rare-earth manganates and other oxide systems. Chem. Mater. 8, 2421 (1996).CrossRefGoogle Scholar
4.Chiang, C.C.K. and Poeppelmeier, K.R.: Structural investigation of oxygen-deficient perovskite CaMnO2.75. Mater. Lett. 12, 102 (1991).CrossRefGoogle Scholar
5.Bocher, L., Aguirre, M.H., Robert, R., Logvinovich, D., Bakardjieva, S., Hejtmanek, J., and Weidenkaff, A.: High-temperature stability, structure and thermoelectric properties of CaMn1-x Nbx O3 phases. Acta Mater. 57, 5667 (2009).CrossRefGoogle Scholar
6.Bocher, L., Aguirre, M.H., Logvinovich, D., Shkabko, A., Robert, R., Trottmann, M., and Weidenkaff, A.: CaMn1-x NbxO3 (x ≤ 0.08) perovskite-type phases as promising new high-temperature n-type thermoelectric materials. Inorg. Chem. 47, 8077 (2008).CrossRefGoogle Scholar
7.Briàtico, J., Alascio, B., Allub, R., Butera, A., Caneiro, A., Causa, M.T., and Tovar, M.: Double-exchange interaction in electron-doped CaMnO3-δ perovskites. Phys. Rev. B 53, 14020 (1996).CrossRefGoogle Scholar
8.Jorge, M.E.M., Dos Santos, A.C., and Nunes, M.R.: Effects of synthesis method on stoichiometry, structure and electrical conductivity of CaMnO3-δ. Int. J. Inorg. Mater. 3, 915 (2001).CrossRefGoogle Scholar
9.Vijayanandhini, K. and Kutty, T.: Phase conversions in calcium manganites with changing Ca/Mn ratios and their influence on the electrical transport properties. J. Mater. Sci. Mater. Electron. 20, 445 (2009).CrossRefGoogle Scholar
10.Snyder, G.J., Lim, J.R., Huang, C-K., and Fleurial, J-P.: Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. Nat. Mater. 2, 528 (2003).CrossRefGoogle ScholarPubMed
11.Hicks, L.D. and Dresselhaus, M.S.: Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47, 16631 (1993).CrossRefGoogle ScholarPubMed
12.Ohta, H., Sugiura, K., and Koumoto, K.: Recent progress in oxide thermoelectric materials: p-Type Ca3Co4O9 and n-type SrTiO3. Inorg. Chem. 47, 8429 (2008).CrossRefGoogle ScholarPubMed
13.Paik, D.S., Prasada Rao, A.V., and Komarneni, S.: Ba titanate and barium/strontium titanate thin films from hydroxide precursors: Preparation and ferroelectric behavior. J. Sol-Gel Sci. Technol. 10, 213 (1997).CrossRefGoogle Scholar
14.Robert, R., Aguirre, M.H., Hug, P., Reller, A., and Weidenkaff, A.: High-temperature thermoelectric properties of Ln(Co, Ni)O3 (Ln = La, Pr, Nd, Sm, Gd and Dy) compounds. Acta Mater. 55, 4965 (2007).CrossRefGoogle Scholar
15.Weidenkaff, A., Robert, R., Aguirre, M., Bocher, L., Lippert, T., and Canulescu, S.: Development of thermoelectric oxides for renewable energy conversion technologies. Renewable Energy 33, 342 (2008).CrossRefGoogle Scholar
16.Taguchi, H., Kuniyoshi, Y., and Nagao, M.: Synthesis of CaMnO3 and electrical properties under various relative pressures of water vapour. J. Mater. Sci. Lett. 10, 675 (1991).CrossRefGoogle Scholar
17.Tichy, R.S. and Goodenough, J.B.: Oxygen permeation in cubic SrMnO3-δ. Solid State Sci. 4, 661 (2002).CrossRefGoogle Scholar
18.Flahaut, D., Mihara, T., Funahashi, R., Nabeshima, N., Lee, K., Ohta, H., and Koumoto, K.: Thermoelectrical properties of A-site substituted Ca1-xRexMnO3 system. J. Appl. Phys. 100, 084911 (2006).CrossRefGoogle Scholar