Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-08T06:51:44.302Z Has data issue: false hasContentIssue false

Tribological characteristics of diamond-like films deposited with an are-discharge method

Published online by Cambridge University Press:  31 January 2011

J-P. Hirvonen
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology Division, Los Alamos, New Mexico 87545
R. Lappalainen
Affiliation:
Cornell University, Department of Materials Science and Engineering, Ithaca, New York 14853
J. Koskinen
Affiliation:
University of Helsinki, Department of Physics, 00170 Helsinki, Finland
A. Anttila
Affiliation:
University of Helsinki, Department of Physics, 00170 Helsinki, Finland
T. R. Jervis
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology Division, Los Alamos, New Mexico 87545
M. Trkula
Affiliation:
Los Alamos National Laboratory, Materials Science and Technology Division, Los Alamos, New Mexico 87545
Get access

Abstract

Using an are-discharge method, we deposited a diamond-like carbon film 600 nm thick on hardened steel. Characterization of the film was carried out with Raman spectroscopy. In dry sliding wear and friction tests, with a hardened steel pin as a counterpart, we obtained a friction coefficient between 10000 and 20000 cycles, with the maximum value of 0.18. The value decreased to 0.12 after about 100000 cycles. We obtained a wear coefficient of 7 × 10−17 m3/mN. A transfer layer formed on the pin during sliding and probably had the dominating effect on the tribological behavior. We observed in nanoindentation measurements that the film softened in a wear track during the first 20000 cycles. Although fracture pits on the wear track occurred, fracture is not the dominant failure mechanism of these films. Degradation of good tribological properties was caused mainly by partial wear-through of the film after 370000 cycles and by a subsequent redeposition of the transfer film on the wear track during prolonged sliding.

Type
Diamond and Diamond-Like Materials
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Spitsyn, B.V., Bouilov, L. L., and Derjaguin, B.V., Prog. Cryst. Growth and Charact. 17, 79 (1988).CrossRefGoogle Scholar
2Angus, J. C., Koidl, P., and Domitz, S., Plasma Deposited Thin Films, edited by Mort, J. and Jansen, F. (CRC, Boca Raton, FL, 1986), p. 89.Google Scholar
3Angus, J. C. and Jansen, F., J. Vac. Sci. Technol. A 6, 1778 (1988).Google Scholar
4Anttila, A., Koskinen, J., Lappalainen, R., Hirvonen, J-P., Stone, D., and Paszkiet, C., Appl. Phys. Lett. 50, 132 (1987).Google Scholar
5Anttila, A., Structure-Property Relationships in Surface-Modified Ceramics, edited by McHargue, C. J., Kossowsky, R., and Hofer, W. O. (Kluwer Academic Publishers, Dordrecht, The Netherlands, 1989), p. 455.Google Scholar
6Hirvonen, J-P., Koskinen, J., Lappalainen, R., and Anttila, A., Materials Science Forum 52/53, edited by Pouch, J. and Alterovitz, S. A. (Trans. Tech. Publications, Aedermannsdorf, Switzerland, 1990), p. 197.Google Scholar
7Koskinen, J., Appl. Phys. Lett. 63, 2094 (1988).Google Scholar
8CRC Handbook of Chemistry and Physics, 51st ed. (Chemical Rubber Co., Cleveland, OH, 1970), p. B-79.Google Scholar
9Eckhardt, G., J. Appl. Phys. 46, 3282 (1975).Google Scholar
10Davis, W. D. and Miller, H. C., J. Appl. Phys. 40, 2212 (1969).CrossRefGoogle Scholar
11Berger, S. D., McKenzie, D.R., and Martin, P. J., Phil. Mag. Lett. 57, 285 (1988).CrossRefGoogle Scholar
12Jahanmir, S., Deckman, D. E., Ives, L. K., Feldman, A., and Farabaugh, E., Wear 133, 73 (1989).Google Scholar
13Enke, K., Dimigen, H., and Hübsch, H., Appl. Phys. Lett. 36, 291 (1980).CrossRefGoogle Scholar
14Hirvonen, J. P., Koskinen, J., Lappalainen, R., Anttila, A., Toivanen, R. O., Arminen, E., and Trkula, M., submitted to Wear (1989).Google Scholar
15Maslov, A. J., Dmitriev, G.K., and Chistyakov, Yu. D., Instrum. and Exp. Tech. 28, 662 (1985).Google Scholar
16Knight, D. S. and White, W. B., J. Mater. Res. 4, 385 (1989).CrossRefGoogle Scholar
17Wada, N., Gaczi, P. J., and Solin, S.A., J. Non-Cryst. Solids 35/36, 543 (1980).CrossRefGoogle Scholar
18Ramsteiner, M., Wagner, J., Wild, Ch., and Koidl, P., J. Appl. Phys. 62, 729 (1987).CrossRefGoogle Scholar
19Oliver, W. C., Hutchings, R., and Pethica, J. B., ASTM Spec. Tech. Pub. 889, 90 (1986).Google Scholar
20Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).Google Scholar
21Holmberg, K., Andersson, P., and Valli, J., Interface Dynamics, edited by Dowson, D., Taylor, C. M., Godet, M., and Berthe, D. (Amsterdam, 1988), p. 227.Google Scholar
22Mildner, D. F. R. and Carpenter, J. M., J. Non-Cryst. Solids 47, 391 (1982).Google Scholar
23Yust, C.S., McHargue, C.J., and Harris, L.A., Mater. Sci. and Eng. A105/106, 489 (1988).Google Scholar
24Rigney, D. A., Chen, L. H., Naylor, M. G. S., and Rosenfield, A. R., Wear 100, 195 (1984).Google Scholar