Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-06-02T11:26:26.826Z Has data issue: false hasContentIssue false

Paleobiology of the basal hydrochoerine Cardiomys Ameghino, 1885 (Rodentia, Caviomorpha, late Miocene, South America) as inferred from its postcranial anatomy

Published online by Cambridge University Press:  24 May 2018

Adriana M. Candela
Affiliation:
CONICET, División Paleontología Vertebrados, Museo de La Plata, Paseo del Bosque, B1900FWA La Plata, Argentina 〈acandela@fcnym.unlp.edu.ar〉
Nahuel A. Muñoz
Affiliation:
CONICET, División Paleontología Vertebrados, Museo de La Plata, Unidades de Investigación Anexo Museo, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Avenida 122 y 60, B1900FWA LA Plata, Argentina 〈nahuelmunoz@fcnym.unlp.edu.ar〉
César M. García-Esponda
Affiliation:
Cátedra Zoología III Vertebrados, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Avenida 122 y 60, B1900FWA La Plata, Argentina 〈cesponda@fcnym.unlp.edu.ar〉

Abstract

Extinct Hydrochoerinae traditionally included within ‘Cardiomyinae’ (Cavioidea, Caviidae) are caviomorph rodents well represented in the late Miocene to late Pliocene of Argentina, but their paleobiology has received little scientific attention. The postcranium of these rodents is poorly known and has not been considered in morphofunctional or systematic studies. Here, we provide the first description of the postcranium of the basal hydrochoerine Cardiomys Ameghino, 1885, based on a well-preserved specimen from the late Miocene of Central Argentina, and evaluate its paleobiological and systematic implications. A morphofunctional study and a character mapping analysis were performed. We concluded that most of its postcranial features are neither adaptations to a specialized cursoriality, as in some extant cavioids, nor major modifications associated with swimming, as in extant capybaras. Cardiomys exhibits several features (high humeral distal articular surface, perforated olecranon fossa, proximal portion of radius cranially located with respect to the ulna, subrectangular-shaped radial head with flattened ulnar facet, calcaneocuboid joint distally located with respect to the astragalonavicular joint) that allow us to interpret it as an ambulatory caviid. Among cavioids, some features of Cardiomys are more similar to those of Hydrochoerus Brisson, 1762 (lateral coronoid process reduced, humeral capitular tail well differentiated, capitular tail facet of the radial head well developed and relatively short craniodistally, plantar process of the navicular massive and short). Other postcranial features (relatively longer and more gracile third metatarsal and phalanges, straight caudal border of the ulna) suggest that Cardiomys would have been a generalized hydrochoerine, as also indicated by its dental and cranial characters.

Type
Articles
Copyright
Copyright © 2018, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abello, M.A., and Candela, A.M., 2010, Postcranial skeleton of the Miocene marsupial Palaeothentes (Paucituberculata, Palaeothentidae): Paleobiology and phylogeny: Journal of Vertebrate Paleontology, v. 30, p. 15151527.Google Scholar
Ameghino, F., 1885, Nuevos restos de mamíferos fósiles oligocenos recogidos por el profesor Pedro Scalabrini y pertenecientes al Museo Provincial de la Ciudad del Paraná: Boletín de la Academia Nacional de Ciencias en Córdoba, v. 8, p. 5207.Google Scholar
Ameghino, F., 1887, Apuntes preliminares sobre algunos mamíferos extinguidos del yacimiento de Monte Hermoso existentes en el “Museo La Plata”: Buenos Aires, Imprenta E Censor, 20 p.Google Scholar
Ameghino, F., 1888, Lista de las especies de mamíferos fósiles del Miocene superior de Monte-Hermoso, hasta ahora conocidas: Buenoa Aires, P.E. Coni, 21 p.Google Scholar
Anaya, F., and MacFadden, B.J., 1995, Pliocene mammals from Inchasi, Bolivia: The endemic fauna just before the Great American Interchange: Bulletin of the Florida Museum of Natural History, v. 39, p. 87140.Google Scholar
Argot, C., 2001, Functional-adaptive anatomy of the forelimb in the Didelphidae, and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus : Journal of Morphology, v. 247, p. 5179.Google Scholar
Bowditch, T.E., 1821, An Analysis of the Natural Classifications of Mammalia for the Use of Students and Travelers: Paris, J. Smith, 115 p.Google Scholar
Brandt, J., 1855, Beitrage zur nahern Kenntniss der Saugethiere Russland’s: Mémoires de l’Académie impériale des sciences de St. Pétersbourg Serie 6 - Sciences Naturelles, v. 7, p. 1–365.Google Scholar
Brisson, M.J., 1762, Le regnum animale in classes IX distributum, sive synopsis methodica sistens generalem animalium distributionem in classes IX, & duarum primarum classium, quadrupedum scilicet & cetaceorum, particularem dibvisionem in ordines, sectiones, genera & species: Paris, T. Haak, 296 p.Google Scholar
Candela, A.M., and Picasso, M.B., 2008, Functional anatomy of the limbs of Erethizontidae (Rodentia, Caviomorpha): Indicators of locomotor behavior in Miocene porcupines: Journal of Morphology., v. 269, p. 552593.Google Scholar
Candela, A.M., Muñoz, N.A., and García-Esponda, C.M., 2017, The tarsal-metatarsal complex of caviomorph rodents: Anatomy and functional-adaptive analysis: Journal of Morphology, v. 278, p. 828847.Google Scholar
Cione, A.L., and Tonni, E.P., 2005, Bioestratigrafía basada en mamíferos del Cenozoico superior de la provincia de Buenos Aires, Argentina, in Barrio, R., Etcheverry, R., Caballé, M., and Llambías, E., eds., Geología y Recursos Minerales de la Provincia de Buenos Aires: La Plata, Relatorio del XVI Congreso Geológico Argentino, v. 11, p. 183200.Google Scholar
Desmarest, A.G., 1820, 1822, Mammalogie ou description des espèce de mammifères. Encyclopèdie Méthodique: Paris, Agasse, 555 p.Google Scholar
Drapeau, M.S.M., 2004, Functional anatomy of the olecranon process in hominoids and Plio-Pleistocene hominins: American Journal of Physical Anthropology, v. 124, p. 297314.Google Scholar
Fischer von Waldheim, G., 1817, Adversaria zoologica: Mémoires de la Société impériale des naturalistes de Moscou, v. 5, p. 357446.Google Scholar
Fujiwara, S., 2009, Olecranon orientation as an indicator of elbow joint angle in the stance phase, and estimation of forelimb posture in extinct quadruped animals: Journal of Morphology, v. 270, p. 11071121.Google Scholar
García-Esponda, C.M., and Candela, A.M., 2010, Anatomy of the hindlimb musculature in the cursorial caviomorph Dasyprocta azarae Lichtenstein, 1823 (Rodentia, Dasyproctidae): Functional and evolutionary significance: Mammalia, v. 74, p. 407.Google Scholar
García-Esponda, C.M., and Candela, A.M., 2016, Hindlimb musculature of the largest living rodent Hydrochoerus hydrochaeris (Caviomorpha): Adaptations to semiaquatic and terrestrial styles of life: Journal of Morphology, v. 277, p. 286305.Google Scholar
Gill, T., 1872, Arrangement of the families of mammals with analytical tables: Smithsonian Miscellaneous Collections, v. 11, p. 198.Google Scholar
Goloboff, P.A., and Catalano, S.A., 2016, TNT version 1.5, including a full implementation of phylogenetic morphometrics: Cladistics, v. 32, p. 221238.Google Scholar
Goloboff, P.A., Mattoni, C.I., and Quinteros, A.S., 2006, Continuous characters analyzed as such: Cladistics, v. 22, p. 589601.Google Scholar
Gray, J.E., 1825, An outline of an attempt at the disposition of the Mammalia into tribes and families with a list of the genera apparently appertaining to each tribe: Annals of Philosophy, new series, v. 10, p. 337344.Google Scholar
Hildebrand, M., 1985, Digging of quadrupeds, in Hildebrand, M., Bramble, D., Liem, K., and Wake, D., eds., Functional Vertebrate Morphology: Cambridge, Belknap Press of Harvard University Press, p. 89109.Google Scholar
Illiger, C.D., 1811, Prodromus systematis mammalium et avium additis terminis zoographicis uttriusque classis: Berlin, Salfeld, 301 p.Google Scholar
International Committee on Veterinary Gross Anatomical Nomenclature 2005, Nomina Anatomica Veterinaria (fourth edition): New York, World Association of Veterinary Anatomists.Google Scholar
Jenkins, F.A. Jr., 1973, The functional anatomy and evolution of the mammalian humero-ulnar articulation: The American Journal of Anatomy, v. 137, p. 281297.Google Scholar
Kerber, L., Negri, F.R., Ribeiro, A.M., Nasif, N., Souza-Filho, J.P., and Ferigolo, J., 2017, Tropical fossil caviomorph rodents from the southwestern Brazilian Amazonia in the context of the South American faunas: Systematics, biochronology, and paleobiogeography: Journal of Mammalian Evolution, v. 24, p. 5770.Google Scholar
Kraglievich, L., 1927, Nota preliminar sobre nuevos géneros y especies de roedores de la fauna argentina: Physis, v. 8, p. 591598.Google Scholar
Kraglievich, L., 1930a, La formación friaseana del Río Frías, Río Fénix, Laguna Blanca, etc. y su fauna de mamíferos: Physis, v. 10, p. 127161.Google Scholar
Kraglievich, L., 1930b, Un nuevo e interesante roedor de la fauna terciaria de Entre Ríos Caviodon (Lelongia) paranesis n. subgen. n. sp.: Anales de la Sociedad Científica Argentina, v. 110, p. 178184.Google Scholar
Kraglievich, L., 1940, Descripción detallada de diversos roedores argentinos terciarios clasificados por el autor, in Torcelli, A. J., ed., Obras completas y trabajos científicos inéditos de Lucas Kraglievich, Obras de geología y paleontología, Volume 2: Buenos Aires, Ministerio de Obras Públicas de la Provincia de Buenos Aires.Google Scholar
Madozzo-Jaén, M.C., and Pérez, M.E., 2017, The most ancient caviine rodent (Hystricognathi, Cavioidea) comes from the late Miocene of Northwest Argentina (South America): Historical Biology, v. 29, p. 376383.Google Scholar
McKenna, M.C., and Bell, S.K., 1997, Classification of mammals above the species level: New York, Columbia University Press, 631 p.Google Scholar
Meyen, F.J.F., 1833, Beiträge zur Zoologie, gesammelt auf einer Reise um die Erde. Zweite Abhandlung. Säugethiere: Nova acta physico-medica Academiae Caesareae Leopoldino-Carolinae Naturae Curiosorum, v. 16, p. 549610.Google Scholar
Mones, A., 1986, Palaeovertebrata Sudamericana.-Catálogo sistemático de los vertebrados fósiles de America del Sur. Parte I, lista preliminar y bibliografía: Courier Forschungsinstitut Senckenberg, v. 82, p. 1625.Google Scholar
Pallas, P.S., 1766, Miscellanea zoologica quibus novae imprimis atque obscurae animalium species describuntur et observationibus iconibusque illustrantur: Hague Comitum, p. van Cleef, xii + 224 p.Google Scholar
Pascual, R., 1961, Un nuevo Cardiomyinae (Rodentia, Caviidae) de la Formación Arroyo Chasicó (Plioceno inferior) de la provincia de Buenos Aires: Ameghiniana, v. 2, p. 6172.Google Scholar
Pascual, R., and Bondesio, P., 1963, Un Nuevo tipo de morfología dentaria en un Cardiatheriinae (Rodentia, Hydrochoeridae) del Plioceno inferior de Huachipampa (San Juan): Ameghiniana, v. 3, p. 4349.Google Scholar
Pascual, R., Ortega Hinojosa, E.J., Gondar, D., and Tonni, E.P., 1966, Paleontografía Bonaerense. Fascículo IV. Vertebrata.: La Plata, Comisión de Investigaciones Científicas de la Provincia de Buenos Aires, 202 p.Google Scholar
Pérez, M.E., Vucetich, M.G., and Deschamps, C.M., 2014, Mandibular remains of Procardiomys martinoi Pascual, 1961 (Hystricognathi, Cavioidea) from the Arroyo Chasicó Formation (early late Miocene) of Argentina: Anatomy and the phylogenetic position of the genus within Caviidae: Historical Biology, v. 26, p. 1625.Google Scholar
Pérez, M.E., Deschamps, C.M., and Vucetich, M.G., 2017a, Diversity, phylogeny and biogeography of the South American ‘cardiomyine’ rodents (Hystricognathi, Cavioidea) with a description of two new species: Papers in Palaeontology, doi: 10.1002/spp2.1095.Google Scholar
Pérez, M.E., Vallejo-Pareja, M.C., Carrillo, J.D., and Jaramillo, C., 2017b, A new Pliocene Capybara (Rodentia, Caviidae) from northern South America (Guajira, Colombia), and its implications for the Great American Biotic Interchange: Journal of Mammalian Evolution, v. 24, p. 111125.Google Scholar
R Development Core Team, 2015, R: A language and environment for statistical computing: Vienna, Austria, R Foundation for Statistical Computing.Google Scholar
Rovereto, G., 1914, Los estratos araucanos y sus fósiles: Anales del Museo Nacional de Historia Natural de Buenos Aires, v. 25, p. 1147.Google Scholar
Samuels, J.X., and Van Valkenburgh, B., 2008, Skeletal indicators of locomotor adaptations in living and extinct rodents: Journal of Morphology, v. 269, p. 13871411.Google Scholar
Sargis, E.J., 2002, Functional morphology of the forelimb of tupaiids (Mammalia, Scandentia) and its phylogenetic implications: Journal of Morphology, v. 253, p. 1042.Google Scholar
Schmitt, D., 2003, Substrate size and primate forelimb mechanics: Implications for understanding the evolution of primate locomotion: International Journal of Primatology, v. 24, p. 10231036.Google Scholar
Schneider, C.A., Rasband, W.S., and Eliceiri, K.W., 2012, NIH Image to ImageJ: 25 years of image analysis: Nature Methods, v. 9, p. 671675.Google Scholar
Szalay, F.S., and Sargis, E.J., 2001, Model-based analysis of postcranial osteology of marsupials from the Palaeocene of Itaboraí (Brazil) and the phylogenetics and biogeography of Metatheria: Geodiversitas, v. 23, p. 139302.Google Scholar
Taylor, M.E., 1974, The functional anatomy of the forelimb of some African Viverridae (Carnivora): Journal of Morphology., v. 143, p. 307335.Google Scholar
Tonni, E., Scillato-Yané, G., Cione, A., and Carlini, A., 1998, Bioestratigrafía del Mioceno continental en el curso inferior del arroyo Chasicó, provincia de Buenos Aires: Resúmenes del VII Congreso Argentino de Paleontología y Bioestratigrafía, p. 135.Google Scholar
Van Valkenburgh, B., 1987, Skeletal indicators of locomotor behavior in living and extinct carnivores: Journal of Vertebrate Paleontology, v. 7, p. 162182.Google Scholar
Vucetich, M.G., and Pérez, M.E., 2011, The putative cardiomyines (Rodentia, Cavioidea) of the middle Miocene of Patagonia (Argentina) and the differentiation of the family Hydrochoeridae: Journal of Vertebrate Paleontology, v. 31, p. 13821386.Google Scholar
Vucetich, M.G., Carlini, A.A., Aguilera, O., and Sánchez-Villagra, M.R., 2010, The tropics as reservoir of otherwise extinct mammals: The case of rodents from a new Pliocene faunal assemblage from northern Venezuela: Journal of Mammalian Evolution, v. 17, p. 265273.Google Scholar
Vucetich, M.G., Deschamps, C.M., Morgan, C.C., and Forasiepi, A.M., 2011, A new species of Cardiomyinae (Rodentia, Hydrochoeridae) from western Argentina. Its age and considerations on ontogeny and diversity of the subfamily: Ameghiniana, v. 48, p. 556567.Google Scholar
Weber, M.W.C., 1928, Die Säugetiere: Einführung in die Anatomie und Systematik der recenten und fossilen Mammalia: Jena, Gustav Fischer, 866 p.Google Scholar
Woods, C.A., 1972, Comparative myology of jaw, hyoid, and pectoral appendicular regions of New and Old World hystricomorph rodents: Bulletin of the American Museum of Natural History, v. 147, p. 115198.Google Scholar
Zárate, M.A., Schultz, P.H., Blasi, A., Heil, C., King, J., and Hames, W., 2007, Geology and geochronology of type Chasicoan (late Miocene) mammal-bearing deposits of Buenos Aires (Argentina): Journal of South American Earth Sciences, v. 23, p. 8190.Google Scholar