Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-06T16:41:47.563Z Has data issue: false hasContentIssue false

Energetic particle tracing in optimized quasi-symmetric stellarator equilibria

Published online by Cambridge University Press:  05 April 2024

P.A. Figueiredo*
Affiliation:
Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
R. Jorge
Affiliation:
Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
J. Ferreira
Affiliation:
Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
P. Rodrigues
Affiliation:
Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
*
Email address for correspondence: pauloamfigueiredo@tecnico.ulisboa.pt

Abstract

Recent developments in the design of magnetic confinement fusion devices have allowed the construction of exceptionally optimized stellarator configurations. The near-axis expansion in particular has been proven to enable the construction of magnetic configurations with good confinement properties while taking only a fraction of the usual computation time to generate optimized magnetic equilibria. However, not much is known about the overall features of fast-particle orbits computed in such analytical, yet simplified, equilibria when compared with those originating from accurate equilibrium solutions. This work aims to assess and demonstrate the potential of the near-axis expansion to provide accurate information on particle orbits and to compute loss fractions in moderate to high aspect ratios. The configurations used here are all scaled to fusion-relevant parameters and approximate quasi-symmetry to various degrees. This allows us to understand how deviations from quasi-symmetry affect particle orbits and what are their effects on the estimation of the loss fraction. Guiding-centre trajectories of fusion-born alpha particles are traced using gyronimo and SIMPLE codes under the NEAT framework, showing good numerical agreement. Discrepancies between near-axis and magnetohydrodynamic fields have minor effects on passing particles but significant effects on trapped particles, especially in quasi-helically symmetric magnetic fields. Effective expressions were found for estimating orbit widths and passing–trapped separatrix in quasi-symmetric near-axis fields. Loss fractions agree in the prompt losses regime but diverge afterwards.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahnert, K. & Mulansky, M. 2011 Odeint – solving ordinary differential equations in C++. AIP Conf. Proc. 1389 (1), 15861589.10.1063/1.3637934CrossRefGoogle Scholar
Albert, C.G., Kasilov, S.V. & Kernbichler, W. 2020 a Accelerated methods for direct computation of fusion alpha particle losses within, stellarator optimization. J. Plasma Phys. 86 (2), 815860201.10.1017/S0022377820000203CrossRefGoogle Scholar
Albert, C.G., Kasilov, S.V. & Kernbichler, W. 2020 b SIMPLE: Symplectic Integration Methods for Particle Loss Estimation (v1.1.1). Zenodo. https://doi.org/10.5281/zenodo.3672031.CrossRefGoogle Scholar
Albert, C.G., Kasilov, S.V. & Kernbichler, W. 2020 c Symplectic integration with non-canonical quadrature for guiding-center orbits in magnetic confinement devices. J. Comput. Phys. 403, 109065.10.1016/j.jcp.2019.109065CrossRefGoogle Scholar
Anderson, F.S.B., Almagri, A.F., Anderson, D.T., Matthews, P.G., Talmadge, J.N. & Shohet, J.L. 1995 The helically symmetric experiment, (HSX) goals, design and status. Fusion Technol. 27, 273277.10.13182/FST95-A11947086CrossRefGoogle Scholar
Bader, A., Drevlak, M., Anderson, D.T., Faber, B.J., Hegna, C.C., Likin, K.M., Schmitt, J.C. & Talmadge, J.N. 2019 a Stellarator equilibria with reactor relevant energetic particle losses. J. Plasma Phys. 85 (5), 905850508.10.1017/S0022377819000680CrossRefGoogle Scholar
Bader, A., Drevlak, M., Anderson, D.T., Faber, B.J., Hegna, C.C., Likin, K.M., Schmitt, J.C. & Talmadge, J.N. 2019 b Stellarator equilibria with reactor relevant energetic particle losses. J. Plasma Phys. 85 (5), 905850508.10.1017/S0022377819000680CrossRefGoogle Scholar
Beidler, C., Grieger, G., Herrnegger, F., Harmeyer, E., Kisslinger, J., Lotz, W., Maassberg, H., Merkel, P., Nührenberg, J., Rau, F., et al. 1990 Physics and engineering design for Wendelstein VII-X. Fusion Technol. 17 (1), 148168.10.13182/FST90-A29178CrossRefGoogle Scholar
Beidler, C.D., Kolesnichenko, Y.I., Marchenko, V.S., Sidorenko, I.N. & Wobig, H. 2001 Stochastic diffusion of energetic ions in optimized stellarators. Phys. Plasmas 8 (6), 27312738.10.1063/1.1365958CrossRefGoogle Scholar
Bindel, D., Landreman, M. & Padidar, M. 2023 Direct optimization of fast-ion confinement in stellarators. Plasma Phys. Control. Fusion 65 (6), 065012.10.1088/1361-6587/acd141CrossRefGoogle Scholar
Boozer, A.H. 1981 Plasma equilibrium with rational magnetic surfaces. Phys. Fluids 24 (11), 1999.10.1063/1.863297CrossRefGoogle Scholar
Cary, J.R. & Brizard, A.J. 2009 Hamiltonian theory of guiding-center motion. Rev. Mod. Phys. 81 (2), 693738.10.1103/RevModPhys.81.693CrossRefGoogle Scholar
Cary, J.R. & Shasharina, S.G. 1997 Omnigenity and quasihelicity in helical plasma confinement systems. Phys. Plasmas 4 (9), 33233333.CrossRefGoogle Scholar
Clauser, C.F., Farengo, R. & Ferrari, H.E. 2019 FOCUS: a full-orbit CUDA solver for particle simulations in magnetized plasmas. Comput. Phys. Commun. 234, 126136.CrossRefGoogle Scholar
Drevlak, M., Geiger, J., Helander, P. & Turkin, Y. 2014 Fast particle confinement with optimized coil currents in the W7-X stellarator. Nucl. Fusion 54 (7), 073002.10.1088/0029-5515/54/7/073002CrossRefGoogle Scholar
Freidberg, J. 2007 Plasma Physics and Fusion Energy. Cambridge University Press.10.1017/CBO9780511755705CrossRefGoogle Scholar
Garren, D.A. & Boozer, A.H. 1991 a Existence of quasihelically symmetric stellarators. Phys. Fluids B 3 (10), 28222834.10.1063/1.859916CrossRefGoogle Scholar
Garren, D.A. & Boozer, A.H. 1991 b Magnetic field strength of toroidal plasma equilibria. Phys. Fluids B 3 (10), 28052821.10.1063/1.859915CrossRefGoogle Scholar
Goodman, A.G., Camacho Mata, K., Henneberg, S.A., Jorge, R., Landreman, M., Plunk, G.G., Smith, H.M., Mackenbach, R.J.J., Beidler, C.D. & Helander, P. 2023 Constructing precisely quasi-isodynamic magnetic fields. J. Plasma Phys. 89.10.1017/S002237782300065XCrossRefGoogle Scholar
Hegna, C.C., Anderson, D.T., Bader, A., Bechtel, T.A., Bhattacharjee, A., Cole, M., Drevlak, M., Duff, J.M., Faber, B.J., Hudson, S.R., et al. 2022 Improving the stellarator through advances in plasma theory. Nucl. Fusion 62 (4), 042012.10.1088/1741-4326/ac29d0CrossRefGoogle Scholar
Henneberg, S.A., Drevlak, M., Nührenberg, C., Beidler, C.D., Turkin, Y., Loizu, J. & Helander, P. 2019 Properties of a new quasi-axisymmetric configuration. Nucl. Fusion 59 (2), 026014.CrossRefGoogle Scholar
Hirshman, S.P. 1983 Steepest-descent moment method for three-dimensional magnetohydrodynamic equilibria. Phys. Fluids 26 (12), 3553.10.1063/1.864116CrossRefGoogle Scholar
Hirvijoki, E., Asunta, O., Koskela, T., Kurki-Suonio, T., Miettunen, J., Sipilä, S., Snicker, A. & Äkäslompolo, S. 2014 ASCOT: solving the kinetic equation of minority particle species in tokamak plasmas. Comput. Phys. Commun. 185 (4), 13101321.10.1016/j.cpc.2014.01.014CrossRefGoogle Scholar
Jorge, R. & Landreman, M. 2021 Ion-temperature-gradient stability near the magnetic axis of quasisymmetric stellarators. Plasma Phys. Control. Fusion 63 (7), 074002.10.1088/1361-6587/abfdd4CrossRefGoogle Scholar
Jorge, R., Sengupta, W. & Landreman, M. 2020 Near-axis expansion of stellarator equilibrium at arbitrary order in the distance to the axis. J. Plasma Phys. 86 (1), 905860106.10.1017/S0022377820000033CrossRefGoogle Scholar
Kramer, G.J., Budny, R.V., Bortolon, A., Fredrickson, E.D., Fu, G.Y., Heidbrink, W.W., Nazikian, R., Valeo, E. & Van Zeeland, M.A. 2013 A description of the full-particle-orbit-following SPIRAL code for simulating fast-ion experiments in tokamaks. Plasma Phys. Control. Fusion 55 (2), 025013.CrossRefGoogle Scholar
Landreman, M. 2021 pyQSC. github. https://github.com/landreman/pyqsc.git.Google Scholar
Landreman, M. 2022 Mapping the space of quasisymmetric stellarators using optimized near-axis expansion. J. Plasma Phys. 88 (6), 905880616.10.1017/S0022377822001258CrossRefGoogle Scholar
Landreman, M. & Paul, E. 2022 Magnetic fields with precise quasisymmetry for plasma confinement. Phys. Rev. Lett. 128 (3), 035001.CrossRefGoogle ScholarPubMed
Landreman, M. & Sengupta, W. 2018 Direct construction of optimized stellarator shapes. Part 1. Theory in cylindrical coordinates. J. Plasma Phys. 84 (6), 905840616.10.1017/S0022377818001289CrossRefGoogle Scholar
Landreman, M. & Sengupta, W. 2019 Constructing stellarators with quasisymmetry to high order. J. Plasma Phys. 85 (6), 815850601.CrossRefGoogle Scholar
Landreman, M., Sengupta, W. & Plunk, G.G. 2019 Direct construction of optimized stellarator shapes. II. Numerical quasisymmetric solutions. J. Plasma Phys. 85 (1).10.1017/S0022377818001344CrossRefGoogle Scholar
Lazerson, S.A., LeViness, A. & Lion, J. 2021 Simulating fusion alpha heating in a stellarator reactor. Plasma Phys. Control. Fusion 63 (12), 125033.CrossRefGoogle Scholar
LeViness, A., Schmitt, J.C., Lazerson, S.A., Bader, A., Faber, B.J., Hammond, K.C. & Gates, D.A. 2022 Energetic particle optimization of quasi-axisymmetric stellarator equilibria. Nucl. Fusion 63 (1), 016018.CrossRefGoogle Scholar
Littlejohn, R.G. 1983 Variational principles of guiding centre motion. J. Plasma Phys. 29 (1), 111125.10.1017/S002237780000060XCrossRefGoogle Scholar
Masaoka, Y. & Murakami, S. 2013 Study of $\alpha$-particle confinement in an LHD-type heliotron reactor. Nucl. Fusion 53 (9), 093030.10.1088/0029-5515/53/9/093030CrossRefGoogle Scholar
Mau, T.K., Kaiser, T.B., Grossman, A.A., Raffray, A.R., Wang, X.R., Lyon, J.F., Maingi, R., Ku, L.P., Zarnstorff, M.C. & ARIES-CS Team 2008 Divertor configuration and heat load studies for the ARIES-CS fusion power plant. Fusion Sci. Technol. 54 (3), 771786.10.13182/FST08-27CrossRefGoogle Scholar
McMillan, M. & Lazerson, S.A. 2014 BEAMS3D neutral beam injection model. Plasma Phys. Control. Fusion 56 (9), 095019.CrossRefGoogle Scholar
Mercier, C. 1964 Equilibrium and stability of a toroidal magnetohydrodynamic system in the neighbourhood of a magnetic axis. Nucl. Fusion 4 (3), 213226.10.1088/0029-5515/4/3/008CrossRefGoogle Scholar
Miyazawa, J., Suzuki, Y., Satake, S., Seki, R., Masaoka, Y., Murakami, S., Yokoyama, M., Narushima, Y., Nunami, M., Goto, T., et al. 2014 Physics analyses on the core plasma properties in the helical fusion demo reactor ffhr-d1. Nucl. Fusion 54 (4), 043010.CrossRefGoogle Scholar
Najmabadi, F., Raffray, A.R. & ARIES-CS Team 2008 The ARIES-CS compact stellarator fusion power plant. Fusion Sci. Technol. 54 (3), 655672.CrossRefGoogle Scholar
Paul, E.J., Bhattacharjee, A., Landreman, M., Alex, D., Velasco, J.L. & Nies, R. 2022 Energetic particle loss mechanisms in reactor-scale equilibria close to quasisymmetry. Nucl. Fusion 62 (12), 126054.CrossRefGoogle Scholar
Pfefferlé, D., Cooper, W.A., Graves, J.P. & Misev, C. 2014 VENUS-LEVIS and its spline-Fourier interpolation of 3D toroidal magnetic field representation for guiding-centre and full-orbit simulations of charged energetic particles. Comput. Phys. Commun. 185 (12), 31273140.CrossRefGoogle Scholar
Rodrigues, P., Assunção, M., Ferreira, J., Figueiredo, A., Jorge, R., Palma, J. & Scapini, A. 2023 gyronimo: an object-oriented library for gyromotion applications. In 49th EPS Conference on Plasma Physics, 3–7 July, Bordeaux. https://github.com/prodrigs/gyronimo.git.Google Scholar
Sanchez, R., Hirshman, S.P., Ware, A.S., Berry, L.A. & Spong, D.A. 2000 Ballooning stability optimization of low-aspect-ratio stellarators. Plasma Phys. Control. Fusion 42 (6), 641653.CrossRefGoogle Scholar
Sánchez, E., Velasco, J.L., Calvo, I. & Mulas, S. 2023 A quasi-isodynamic configuration with good confinement of fast ions at low plasma $\beta$. Nucl. Fusion 63 (6), 066037.10.1088/1741-4326/accd82CrossRefGoogle Scholar
Solov'ev, L.S. & Shafranov, V.D. 1970 Plasma confinement in closed magnetic systems. In Reviews of Plasma Physics (ed. M.A. Leontovich), pp. 1–247. Springer.CrossRefGoogle Scholar
Tani, K., Azumi, M., Kishimoto, H. & Tamura, S. 1981 Effect of toroidal field ripple on fast ion behavior in a tokamak. J. Phys. Soc. Japan 50 (5), 17261737.10.1143/JPSJ.50.1726CrossRefGoogle Scholar
Velasco, J.L., Calvo, I., Sánchez, E. & Parra, F.I. 2023 Robust stellarator optimization via flat mirror magnetic fields. Nucl. Fusion 63 (12), 126038.CrossRefGoogle Scholar
Ward, S.H., Akers, R., Jacobsen, A.S., Ollus, P., Pinches, S.D., Tholerus, E., Vann, R.G.L. & Van Zeeland, M.A. 2021 Verification and validation of the high-performance Lorentz-orbit code for use in stellarators and tokamaks (LOCUST). Nucl. Fusion 61 (8), 086029.CrossRefGoogle Scholar