Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-02T10:47:40.663Z Has data issue: false hasContentIssue false

Ion angular distribution simulation of the Highly Efficient Multistage Plasma Thruster

Published online by Cambridge University Press:  22 February 2017

J. Duras*
Affiliation:
Nuremberg Institute of Technology, D-90489 Nuremberg, Germany Institute of Physics, University of Greifswald, D-17498 Greifswald, Germany
D. Kahnfeld
Affiliation:
Institute of Physics, University of Greifswald, D-17498 Greifswald, Germany
G. Bandelow
Affiliation:
Institute of Physics, University of Greifswald, D-17498 Greifswald, Germany
S. Kemnitz
Affiliation:
Institute of Computer Science, University of Rostock, D-18059 Rostock, Germany
K. Lüskow
Affiliation:
Institute of Physics, University of Greifswald, D-17498 Greifswald, Germany
P. Matthias
Affiliation:
Institute of Physics, University of Greifswald, D-17498 Greifswald, Germany
N. Koch
Affiliation:
Nuremberg Institute of Technology, D-90489 Nuremberg, Germany
R. Schneider
Affiliation:
Institute of Physics, University of Greifswald, D-17498 Greifswald, Germany
*
Email address for correspondence: julia.duras@th-nuernberg.de

Abstract

Ion angular current and energy distributions are important parameters for ion thrusters, which are typically measured at a few tens of centimetres to a few metres distance from the thruster exit. However, fully kinetic particle-in-cell (PIC) simulations are not able to simulate such domain sizes due to high computational costs. Therefore, a parallelisation strategy of the code is presented to reduce computational time. The calculated ion beam angular distributions in the plume region are quite sensitive to boundary conditions of the potential, possible additional source contributions (e.g. from secondary electron emission at vessel walls) and charge exchange collisions. Within this work a model for secondary electrons emitted from the vessel wall is included. In order to account for limits of the model due to its limited domain size, a correction of the simulated angular ion energy distribution by the potential boundary is presented to represent the conditions at the location of the experimental measurement in $1~\text{m}$ distance. In addition, a post-processing procedure is suggested to include charge exchange collisions in the plume region not covered by the original PIC simulation domain for the simulation of ion angular distributions measured at $1~\text{m}$ distance.

Type
Research Article
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bohm, D., Burhop, E. H. S. & Massey, H. S. W. 1949 The Characteristics of Electrical Discharges in Magnetic Fields. McGraw-Hill.Google Scholar
Bronold, F. X., Matyash, K., Tskhakaya, D., Schneider, R. & Fehske, H. 2007 Radio-frequency discharges in oxygen: I. particle-based modelling. J. Phys. D: Appl. Phys. 40 (21), 65836592.CrossRefGoogle Scholar
Duras, J., Matyash, K., Tskhakaya, D., Kalentev, O. & Schneider, R. 2014 Self-force in 1d electrostatic particle-in-cell codes for non-equidistant grids. Contrib. Plasma Phys. 54 (8), 697711.CrossRefGoogle Scholar
Duras, J., Schneider, R., Kalentev, O., Kemnitz, K., Matyash, K., Koch, N., Lüskow, K., Kahnfeld, D. & Bandelow, G. 2016 Influence of electron sources in the near-field plume in a multistage plasma thruster. Plasma Physics and Technology 3 (3), 126130.CrossRefGoogle Scholar
Hayashi, M.2003 Bibliography of electron and photon cross sections with atoms and molecules published in the 20th Century – Argon –. Res. Rep. NIFS-Data Series, NIFS-DATA-072.Google Scholar
Kahnfeld, D., Bandelow, G., Duras, J., Lüskow, K., Kemnitz, K. & Schneider, R. 2016 Solution of poisson’s equation in electrostatic particle-in-cell simulations. Acta Polytech; (submitted).Google Scholar
Kalentev, O., Matyash, K., Duras, J., Lüskow, K. L., Schneider, R., Koch, N. & Schirra, M. 2014 Electrostatic ion thrusters – towards predictive modeling. Contrib. Plasma Phys. 54, 235248.CrossRefGoogle Scholar
Koch, N., Harmann, H.-P. & Kornfeld, G. 2007 Status of the THALES high efficiency multi stage plasma thruster development for HEMP-T 3050 and HEMP-T 30250. In Proceedings of the 30th International Electric Propulsion Conference, vol. IEPC-2007-110. Electric Rocket Propulsion Society.Google Scholar
Koch, N., Schirra, M., Weis, S., Lazurenko, A., van Reijen, B., Haderspeck, J., Genovese, A., Holtmann, H.-P., Schneider, R., Matyash, K. et al. 2011 The hempt concept – a survey on theoretical considerations and experimental evidences. In Proceedings of the 32nd International Electric Propulsion Conference, vol. IEPC-2011-236. Electric Rocket Propulsion Society.Google Scholar
Kornfeld, G., Koch, N. & Harmann, H.-P. 2007 Physics and evolution of HEMP-Thrusters. In Proceedings of the 30th International Electric Propulsion Conference, vol. IEPC-2007-108. Electric Rocket Propulsion Society.Google Scholar
Kornfeld, G., Seidel, H. & Wegener, J.1998 Plasma accelerator arrangement. Patent PCT/DE99/01708.Google Scholar
Li, X. S. 2005 An overview of superlu: Algorithms, implementation, and user in- terface. ACM Trans. Math. Softw. 31, 302325.CrossRefGoogle Scholar
Matyash, K., Kalentev, O., Schneider, R., Taccogna, F., Koch, N. & Schirra, M. 2009 Kinetic Simulation of the stationary HEMP thruster including the near-filed plume region. In Proceedings of the 31st International Electric Propulsion Conference, vol. IEPC-2009-110. Electric Rocket Propulsion Society.Google Scholar
Matyash, K., Schneider, R., Mutzke, A., Kalentev, O., Taccogna, F., Koch, N. & Schirra, M. 2010 Kinetic simulations of SPT and HEMP thrusters including the near-field plume region. IEEE Trans. Plasma Sci. 38 (9, Part 1), 22742280.CrossRefGoogle Scholar
Phelps, A. V.2000 Nitrogen atoms and molecules. Retreved from http://jila.colorado.edu/avp/collision_data/neutralneutral/atomatom.txt (January 2015).Google Scholar
Phelps, A. V.2002 Nitrogen atomic and molecular ions. Retreved from http://jila.colorado.edu/avp/collision_data/ionneutral/IONATOM.TXT (January 2015).Google Scholar
Procassini, R., Birdsall, C., Morese, E. & Cohen, B.1987 A relativistic monte carlo binary collision model for use in plasma particle simulation codes. Mem. No. UCB/ERL M87/24, University of California, Berkeley.Google Scholar
van Reijen, B., Weis, S., Lazurenko, A., Haderspeck, J., Genovese, A., Holtmann, P., Ruf, K. & Pttmann, N. 2013 High precision thrust vector determination through full hemispherical rpa measurements assisted by anguar mapping of energy charge state distribution. In Proceedings of the 33nd International Electric Propulsion Conference, vol. IEPC-2013-284. Electric Rocket Propulsion Society.Google Scholar
Reiter, D.2009 The EIRENE code user manual. Retreved from http://www.eirene.de (September 2016).Google Scholar
Rosenberg, D. & Wehner, G. K. 1962 Sputtering yields for low energy He+-, Kr+-, and Xe+-Ion Bombardment. J. Appl. Phys. 33 (5), 18421845.CrossRefGoogle Scholar
Stoer, J. 2005a Numerische Mathematik, vol. 1. Springer.Google Scholar
Stoer, J. 2005b Numerische Mathematik, vol. 2. Springer.Google Scholar
Taccogna, F., Longo, S., Capitelli, M. & Schneider, R. 2005 Self-similarity in hall plasma discharges: Applications to particle models. Phys. Plasmas 12, 053502.CrossRefGoogle Scholar
Takizuka, T. & Abe, H. 1977 A binary collision model for plasma simulation with a particle code. J. Comput. Phys. 25, 205219.CrossRefGoogle Scholar
Tskhakaya, D., Matyash, K., Schneider, R. & Taccogna, F. 2007 The particle-in-cell method. Contrib. Plasma Phys. 47 (8–9), 563594.CrossRefGoogle Scholar
Vahedi, V., Dipeso, G., Birdsall, C. K., Lieberman, M. A. & Rognlien, T. D. 1993 Capacitive RF discharges modelled by particle-in-cell Monte Carlo simulation. I. Analysis of numerical techniques. Plasma Sources Sci. Technol. 2 (4), 261.CrossRefGoogle Scholar
Yamamura, Y., Matsunami, N. & Itoh, N. 1983 Theoretical studies on an empirical formular for spittering yiels at normal incidence. Radiation Effects 71, 6586.CrossRefGoogle Scholar