Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-02T04:19:07.137Z Has data issue: false hasContentIssue false

Kinetic theory of electromagnetic instabilities in weakly ionized neon plasma with inelastic collisions

Published online by Cambridge University Press:  13 March 2009

V. J. Žigman
Affiliation:
Institute of Physics, Faculty of Natural and Mathematical Sciences, Belgrade, Yugoslavia
B. S. Milić
Affiliation:
Institute of Physics, Faculty of Natural and Mathematical Sciences, Belgrade, Yugoslavia

Abstract

The spectra and the instability criteria for the two electromagnetic wave modes previously found to exist in weakly ionized plasmas placed in an external d.c. electric field are analysed here for neon plasma for a wide range of the parameter Eo/nn. The presence of electron-atom inelastic collisions is taken into account, assuming that the electron temperature is in the range where these collisions dominantly result in atomic excitations. The linearized kinetic equations are used in combination with a previously evaluated non-Maxwellian electron steady-state distribution function appropriate for the situation in which collisional excitations are significant. For any given ratio of electron drift to thermal velocity, the wavelengths and the angles of propagation at which the instabilities are predicted to set in are determined.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramowitz, M. & Stegun, I. A. 1972 Handbook of Mathematical Functions. Dover.Google Scholar
Ginzburg, V. L. 1960 Propagation of Electromagnetic Waves in Plasma. Nauka. (In Russian.)Google Scholar
Glinov, A. P. 1981 Soviet High Temp. Phys. 19, 903.Google Scholar
Golant, V. E. 1957 Soviet J. Tech. Phys. 27, 756, 1482.Google Scholar
Kagan, Yu. & Lyaguschenko, R. I. 1964 Soviet J. Tech. Phys. 34, 821.Google Scholar
Kovrizhnik, L. M. 1959 Soviet Phys. JETP, 37, 490.Google Scholar
Makabe, T. & Mori, T. 1978 J. Phys. B, 11, 3785.Google Scholar
Makabe, T. & Mori, T. 1980 J. Phys. D, 13, 387.Google Scholar
McCormack, F. J. 1969 Phys. Rev. 178, 319.CrossRefGoogle Scholar
Myshenkov, V. I. & Yatsenko, N. A. 1982 Soviet Plasma Phys. 8, 704.Google Scholar
Schlie, L. A. 1976 J. Appl. Phys. 47, 1397.Google Scholar
Shoub, E. C. 1977 Astrophys. J. Suppl. 34, 259.Google Scholar
Singh, N. 1978 Plasma Phys. 20, 927.Google Scholar
Smits, R. M. M. 1977 Ph.D. Thesis, Eindhoven.Google Scholar
Sreenivasan, S. R. & Schroeder, M. B. 1983 Plasma Phys. 25, 925.Google Scholar
Tsendin, L. D. 1971 Soviet J. Tech. Phys. 41, 2271.Google Scholar
Tsendin, L. D. 1977 Soviet J. Tech. Phys. 47, 1598.Google Scholar
Tsendin, L. D. 1982 Soviet Plasma Phys. 8, 169.Google Scholar
Winkler, R. & Wilhelm, J. 1983 Beitr. Plasmaphys. 23, 219.Google Scholar
Zaitsev, V. V., Savelyev, V. A., Netyagov, P. D. & Golubenets, R. I. 1981 Soviet High Temp. Phys. 19, 917.Google Scholar
Žigman, V. J. & Milić, B. S. 1980 J. Plasma Phys. 24, 503.CrossRefGoogle Scholar
Žigman, V. J. & Milić, B. S. 1982 J. Plasma Phys. 28, 177.Google Scholar