Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-19T21:03:04.161Z Has data issue: false hasContentIssue false

Nonlinear interaction of Alfvénic instabilities and turbulence via the modification of the equilibrium profiles

Published online by Cambridge University Press:  21 November 2023

A. Biancalani*
Affiliation:
Léonard de Vinci Pôle Universitaire, Research Center, 92916 Paris La Défense, France
A. Bottino
Affiliation:
Max-Planck Institute for Plasma Physics, 85748 Garching, Germany
D. Del Sarto
Affiliation:
Institut Jean Lamour – UMR 7168, University of Lorraine – BP 239, F-54506 Vandoeuvre les Nancy, France
M.V. Falessi
Affiliation:
Center for Nonlinear Plasma Science and ENEA C. R. Frascati, 00044 Frascati, Italy
T. Hayward-Schneider
Affiliation:
Max-Planck Institute for Plasma Physics, 85748 Garching, Germany
P. Lauber
Affiliation:
Max-Planck Institute for Plasma Physics, 85748 Garching, Germany
A. Mishchenko
Affiliation:
Max-Planck Institute for Plasma Physics, 17491 Greifswald, Germany
B. Rettino
Affiliation:
Max-Planck Institute for Plasma Physics, 85748 Garching, Germany
J.N. Sama
Affiliation:
Institut Jean Lamour – UMR 7168, University of Lorraine – BP 239, F-54506 Vandoeuvre les Nancy, France
F. Vannini
Affiliation:
Max-Planck Institute for Plasma Physics, 85748 Garching, Germany
L. Villard
Affiliation:
Ecole Polytechnique Fédérale de Lausanne (EPFL), Swiss Plasma Center (SPC), CH-1015 Lausanne, Switzerland
X. Wang
Affiliation:
Max-Planck Institute for Plasma Physics, 85748 Garching, Germany
F. Zonca
Affiliation:
Center for Nonlinear Plasma Science and ENEA C. R. Frascati, 00044 Frascati, Italy Institute for Fusion Theory and Simulation and Department of Physics, Zhejiang University, 310027 Hangzhou, PR China
*
Email address for correspondence: alessandro.biancalani@devinci.fr

Abstract

Nonlinear simulations of Alfvén modes (AMs) driven by energetic particles (EPs) in the presence of turbulence are performed with the gyrokinetic particle-in-cell code ORB5. The AMs carry a heat flux, and consequently they nonlinearly modify the plasma temperature profiles. The isolated effect of this modification on the dynamics of turbulence is studied by means of electrostatic simulations. We find that turbulence is reduced when the profiles relaxed by the AM are used, with respect to the simulation where the unperturbed profiles are used. This is an example of indirect interaction of EPs and turbulence. First, an analytic magnetic equilibrium with circular concentric flux surfaces is considered as a simplified example for this study. Then, an application to an experimentally relevant case of ASDEX Upgrade is discussed.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angioni, C., Peeters, A.G., Pereverzev, G.V., Bottino, A., Candy, J., Dux, R., Fable, E., Hein, T. & Waltz, R.E. 2009 Gyrokinetic simulations of impurity, He ash and ${\alpha }$ particle transport and consequences on ITER transport modelling. Nucl. Fusion 49 (5), 055013.CrossRefGoogle Scholar
Appert, K., Gruber, R., Troyuon, F. & Vaclavik, J. 1982 Excitation of global eigenmodes of the Alfven wave in Tokamaks. Plasma Phys. 24 (9), 11471159.CrossRefGoogle Scholar
Bass, E.M. & Waltz, R.E. 2010 Gyrokinetic simulations of mesoscale energetic particle-driven Alfvénic turbulent transport embedded in microturbulence. Phys. Plasmas 17 (11), 112319.CrossRefGoogle Scholar
Biancalani, A., Bottino, A., Brunner, S., Di Siena, A., Görler, T., Hatzky, R., Jenko, F., Könies, A., Lauber, P., Novikau, I., et al. 2019 Interaction of alfvenic modes and turbulence, investigated in selfconsistent gyrokinetic framework. In 46th EPS Conf. on Plasma Phys., July 8-12, 2019, Milan, Italy, I5.J602.Google Scholar
Biancalani, A., Bottino, A., Di Siena, A., Gürcan, Ö., Hayward-Schneider, T., Jenko, F., Lauber, P., Mishchenko, A., Morel, P., Novikau, I., et al. 2021 Gyrokinetic investigation of Alfvén instabilities in the presence of turbulence. Plasma Phys. Control. Fusion 63 (6), 065009.CrossRefGoogle Scholar
Biancalani, A., Bottino, A., Lauber, P., Mishchenko, A. & Vannini, F. 2020 Effect of the electron redistribution on the nonlinear saturation of Alfven eigenmodes and the excitation of zonal flows. J. Plasma Phys. 86, 82586030631.CrossRefGoogle Scholar
Bock, A., Fable, E., Fischer, R., Reich, M., Rittich, D., Stober, J., Bernert, M., Burckhart, A., Doerk, H., Dunne, M., et al. 2017 Non-inductive improved H-mode operation at ASDEX Upgrade. Nucl. Fusion 57 (12), 126041.CrossRefGoogle Scholar
Bottino, A., Vernay, T., Scott, B., Brunner, S., Hatzky, R., Jolliet, S., McMillan, B.F., Tran, T.M. & Villard, L. 2011 Global simulations of tokamak microturbulence: finite-$\beta$ effects and collisions. Plasma Phys. Control. Fusion 53 (12), 124027.CrossRefGoogle Scholar
Chen, L., Qiu, Z. & Zonca, F. 2022 On scattering and damping of toroidal Alfvén eigenmode by drift wave turbulence. Nucl. Fusion 62 (9), 094001.CrossRefGoogle Scholar
Chen, L. & Zonca, F. 2016 Physics of Alfvén waves and energetic particles in burning plasmas. Rev. Mod. Phys. 88 (1), 015008.CrossRefGoogle Scholar
Citrin, J., Jenko, F., Mantica, P., Told, D., Bourdelle, C., Garcia, J., Haverkort, J.W., Hogeweij, G.M.D., Johnson, T. & Pueschel, M.J. 2013 Nonlinear stabilization of tokamak microturbulence by fast ions. Phys. Rev. Lett. 111 (15), 155001.CrossRefGoogle ScholarPubMed
Di Siena, A., Bilato, R., Görler, T., Navarro, A.B., Poli, E., Bobkov, V., Jarema, D., Fable, E., Angioni, C., Kazakov, Y.O., et al. 2021 New high-confinement regime with fast ions in the core of fusion plasmas. Phys. Rev. Lett. 127 (2), 025002.CrossRefGoogle ScholarPubMed
Di Siena, A., Görler, T., Poli, E., Navarro, A.B., Biancalani, A. & Jenko, F. 2019 Electromagnetic turbulence suppression by energetic particle driven modes. Nucl. Fusion 59 (12), 124001.CrossRefGoogle Scholar
Falessi, M.V., Chen, L., Qiu, Z. & Zonca, F. 2023 Nonlinear equilibria and transport processes in burning plasmas. New J. Phys. (submitted), arXiv:2306.08642.Google Scholar
Falessi, M.V. & Zonca, F. 2019 Transport theory of phase space zonal structures. Phys. Plasmas 26 (2), 022305.CrossRefGoogle Scholar
Garcia, J., Challis, C., Citrin, J., Doerk, H., Giruzzi, G., Görler, T., Jenko, F., Maget, P. & Contributors, J. 2015 Key impact of finite-beta and fast ions in core and edge tokamak regions for the transition to advanced scenarios. Nucl. Fusion 55 (5), 053007.CrossRefGoogle Scholar
Ghizzo, A. & Del Sarto, D. 2022 The model of particles modes. II. Transition to a fishbone-like state triggered by global synchronization and energetic particles. Phys. Plasmas 29, 042507.CrossRefGoogle Scholar
Hasegawa, A., Maclennan, C.G. & Kodama, Y. 1979 Nonlinear behavior and turbulence spectra of drift waves and Rossby waves. Phys. Fluids 22, 21222129.CrossRefGoogle Scholar
Heidbrink, W.W., Park, J.M., Murakami, M., Petty, C.C., Holcomb, C. & Van Zeeland, M.A. 2009 Evidence for fast-ion transport by microturbulence. Phys. Rev. Lett. 103, 175001.CrossRefGoogle ScholarPubMed
Ishizawa, A., Imadera, K., Nakamura, Y. & Kishimoto, Y. 2021 Multi-scale interactions between turbulence and magnetohydrodynamic instability driven by energetic particles. Nucl. Fusion 61 (11), 114002.CrossRefGoogle Scholar
Jolliet, S., Bottino, A., Angelino, P., Hatzky, R., Tran, T.M., Mcmillan, B.F., Sauter, O., Appert, K., Idomura, Y. & Villard, L. 2007 A global collisionless PIC code in magnetic coordinates. Comput. Phys. Commun. 177, 409425.CrossRefGoogle Scholar
Lanti, E., Ohana, N., Tronko, N., Hayward-Schneider, T., Bottino, A., McMillan, B.F., Mishchenko, A., Scheinberg, A., Biancalani, A., Angelino, P., et al. 2020 ORB5: a global electromagnetic gyrokinetic code using the PIC approach in toroidal geometry. Comput. Phys. Commun. 251, 107072.CrossRefGoogle Scholar
Maraschek, M., Günter, S., Kass, T., Scott, B., Zohm, H. & Team, A.U. 1997 Observation of toroidicity-induced Alfvén eigenmodes in ohmically heated plasmas by drift wave excitation. Phys. Rev. Lett. 79, 41864189.CrossRefGoogle Scholar
McMillan, B.F., Jolliet, S., Tran, T.M., Villard, L., Bottino, A. & Angelino, P. 2008 Long global gyrokinetic simulations: source terms and particle noise control. Phys. Plasmas 15 (5), 052308.CrossRefGoogle Scholar
Mishchenko, A., Biancalani, A., Borchardt, M., Bottino, A., Briguglio, S., Dumont, R., Ferreira, J., Graves, J.P., Hayward-Schneider, T., Kleiber, R., et al. 2023 Numerical tools for burning plasmas. Plasma Phys. Control. Fusion 65 (6), 064001.CrossRefGoogle Scholar
Mishchenko, A., Biancalani, A., Bottino, A., Hayward-Schneider, T., Lauber, P., Lanti, E., Villard, L., Kleiber, R., Könies, A. & Borchardt, M. 2021 Numerics and computation in gyrokinetic simulations of electromagnetic turbulence with global particle-in-cell codes. Plasma Phys. Control. Fusion 63 (8), 084007.CrossRefGoogle Scholar
Mishchenko, A., Bottino, A., Biancalani, A., Hatzky, R., Hayward-Schneider, T., Ohana, N., Lanti, E., Brunner, S., Villard, L., Borchardt, M., et al. 2019 Pullback scheme implementation in ORB5. Comput. Phys. Commun. 238, 194202.CrossRefGoogle Scholar
Mishchenko, A., Bottino, A., Hayward-Schneider, T., Poli, E., Wang, X., Kleiber, R., Borchardt, M., Nührenberg, C., Biancalani, A., Könies, A., et al. 2022 Gyrokinetic particle-in-cell simulations of electromagnetic turbulence in the presence of fast particles and global modes. Plasma Phys. Control. Fusion 64 (10), 104009.CrossRefGoogle Scholar
Mishchenko, A., Könies, A., Kleiber, R. & Cole, M. 2014 Pullback transformation in gyrokinetic electromagnetic simulations. Phys. Plasmas 21 (9), 092110.CrossRefGoogle Scholar
Qiu, Z., Chen, L. & Zonca, F. 2016 Fine structure zonal flow excitation by beta-induced Alfvén eigenmode. Nucl. Fusion 56 (10), 106013.CrossRefGoogle Scholar
Qiu, Z., Chen, L. & Zonca, F. 2023 Gyrokinetic theory of toroidal Alfvén eigenmode saturation via nonlinear wave–wave coupling. Rev. Mod. Plasma Phys. 7, 28. https://doi.org/10.1007/s41614-023-00130-7CrossRefGoogle Scholar
Rettino, B., Hayward-Schneider, T., Biancalani, A., Bottino, A., Lauber, P., Chavdarovski, I., Weiland, M., Vannini, F. & Jenko, F. 2022 Gyrokinetic modeling of anisotropic energetic particle driven instabilities in tokamak plasmas. Nucl. Fusion 62 (7), 076027.CrossRefGoogle Scholar
Romanelli, M., Zocco, A., Crisanti, F. & Contributors, J.-E. 2010 Fast ion stabilization of the ion temperature gradient driven modes in the Joint European Torus hybrid-scenario plasmas: a trigger mechanism for internal transport barrier formation. Plasma Phys. Control. Fusion 52 (4), 045007.CrossRefGoogle Scholar
Rosenbluth, M.N. & Hinton, F.L. 1998 Poloidal flow driven by ion-temperature-gradient turbulence in tokamaks. Phys. Rev. Lett. 80, 724727.CrossRefGoogle Scholar
Rudakov, L.I. & Sagdeev, R.Z. 1961 On the instability of a nonuniform rarefied plasma in a strong magnetic field. Sov. Phys. Dokl. 6, 415.Google Scholar
Tardini, G., Hobirk, J., Igochine, V.G., Maggi, C.F., Martin, P., McCune, D., Peeters, A.G., Sips, A.C.C., Stäbler, A., Stober, J., et al. 2007 Thermal ions dilution and ITG suppression in ASDEX Upgrade ion ITBs. Nucl. Fusion 47 (4), 280287.CrossRefGoogle Scholar
Vannini, F., Biancalani, A., Bottino, A., Hayward-Schneider, T., Lauber, P., Mishchenko, A., Novikau, I., Poli, E. & ASDEX Upgrade Team 2020 Gyrokinetic investigation of the damping channels of Alfvén modes in ASDEX Upgrade. Phys. Plasmas 27 (4), 042501.CrossRefGoogle Scholar
Vannini, F., Biancalani, A., Bottino, A., Hayward-Schneider, T., Lauber, P., Mishchenko, A., Poli, E., Rettino, B., Vlad, G. & Wang, X. 2022 a Gyrokinetic modelling of the Alfvén mode and EGAM activity in ASDEX Upgrade. In Journal of Physics Conference Series, Journal of Physics Conference Series, vol. 2397, p. 012003. IOP Publishing.CrossRefGoogle Scholar
Vannini, F., Biancalani, A., Bottino, A., Hayward-Schneider, T., Lauber, P., Mishchenko, A., Poli, E., Rettino, B., Vlad, G., Wang, X., et al. 2022 b Gyrokinetic modelling of the Alfvén mode activity in ASDEX Upgrade with an isotropic slowing-down fast-particle distribution. Nucl. Fusion 62 (12), 126042.CrossRefGoogle Scholar
Vannini, F., Biancalani, A., Bottino, A., Hayward-Schneider, T., Lauber, P., Mishchenko, A., Poli, E., Vlad, G. & ASDEX Upgrade Team 2021 Gyrokinetic investigation of the nonlinear interaction of Alfvén instabilities and energetic particle-driven geodesic acoustic modes. Phys. Plasmas 28 (7), 072504.CrossRefGoogle Scholar
Vlad, G., Wang, X., Vannini, F., Briguglio, S., Carlevaro, N., Falessi, M.V., Fogaccia, G., Fusco, V., Zonca, F., Biancalani, A., et al. 2021 A linear benchmark between HYMAGYC, MEGA and ORB5 codes using the NLED-AUG test case to study Alfvénic modes driven by energetic particles. Nucl. Fusion 61 (11), 116026.CrossRefGoogle Scholar
White, R.B. & Mynick, H.E. 1989 Alpha particle confinement in tokamaks. Phys. Fluids B 1 (5), 980982.CrossRefGoogle Scholar
Zhang, W., Decyk, V., Holod, I., Xiao, Y., Lin, Z. & Chen, L. 2010 Scalings of energetic particle transport by ion temperature gradient microturbulencea). Phys. Plasmas 17 (5), 055902.CrossRefGoogle Scholar
Zonca, F., Chen, L., Briguglio, S., Fogaccia, G., Milovanov, A.V., Qiu, Z., Vlad, G. & Wang, X. 2015 Energetic particles and multi-scale dynamics in fusion plasmas. Plasma Phys. Control. Fusion 57 (1), 014024.CrossRefGoogle Scholar
Zonca, F., Chen, L., Falessi, M.V. & Qiu, Z. 2021 Nonlinear radial envelope evolution equations and energetic particle transport in tokamak plasmas. In Journal of Physics Conference Series, Journal of Physics Conference Series, vol. 1785, p. 012005. IOP Publishing.CrossRefGoogle Scholar