Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-06-08T12:10:47.291Z Has data issue: false hasContentIssue false

Experimental determination of set-up displacements in anthropomorphic phantom in single-isocentre radiosurgery for multiple brain metastases by off-axis Winston–Lutz test: ExacTracTM v.6 versus DynamicTM

Published online by Cambridge University Press:  24 July 2023

J. A. Rojas-López*
Affiliation:
Universidad Nacional de Córdoba, Facultad de Matemática, Física, Astronomía y Computación, Córdoba, Argentina Hospital Almater, Mexicali, Baja California, Mexico
M. A. Chesta
Affiliation:
Universidad Nacional de Córdoba, Facultad de Matemática, Física, Astronomía y Computación, Córdoba, Argentina
C. D. Venencia
Affiliation:
Instituto Zunino, Córdoba, Argentina
*
Corresponding author: J. A. Rojas-López; Email: alejandro.rojas@almater.com

Abstract

Purpose:

We compare the accuracy of the off-axis Winston–Lutz (WL) test in two versions of ExacTracTM: version 6.0 (ETv6) and Dynamic (ETD) in the same linac (TrueBeam STx®).

Materials and methods:

An upgraded of the ExacTracTM system was done in our institution. It was designed as an off-axis WL test before the update for comparison purposes. A head 3D-printed phantom based on a patient’s computed tomography images was used. Nine metallic fiducials were inserted and distributed on the phantom. Each target (fiducial) was designed an off-axis WL test with eight different gantry/collimator/table combinations. The phantom was placed using two different ETv6 and ETD in the same linac, and cone-beam computed tomography and electronic portal imaging device (EPID) images were acquired. The 2D deviation between the centre of the fiducial and the radiation field was found and compared with the original digital reconstructed radiography (DRR) by the profiles.

Results:

The phantom allows the definition of a procedure to determine off-axis deviations in radiosurgery treatments. The displacements calculated from the WL test showed acceptable values for both versions taking into account 3D displacement tolerances of 1 mm. These values were reached with rigorous quality assurance (QA) linac tests performed routinely that include mechanical, MV/kV and image-guided radiotherapy (IGRT) tests. However, ETD indicated more accurate values for all the targets no matter the distance to the isocentre (3D displacements < 0·5 mm).

Conclusion:

In terms of the IGRT correction without set-up displacements, ETD is up to twice as accurate as the ETv6, showing 3D displacements up to 0·5 mm in all targets.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gao, J, Liu, X. Off-Isocenter Winston-Lutz test for stereotactic radiosurgery/stereotactic body radiotherapy. Int J Med Phys Clin Eng Radiat Oncol 2016; 5: 154161. doi: 10.4236/IJMPCERO.2016.52017.CrossRefGoogle Scholar
Ahn, K H, Yenice, K M, Koshy, M, Slavin, K V, Aydogan, B Frame-based radiosurgery of multiple metastases using single-isocenter volumetric modulated arc therapy technique. J Appl Clin Med Phys 2019; 20 (8): 2128. doi: 10.1002/acm2.12672 CrossRefGoogle ScholarPubMed
Nakano, H, Tanabe, S, Utsunomiya, S et al. Effect of setup error in the single-isocenter technique on stereotactic radiosurgery for multiple brain metastases. J Appl Clin Med Phys 2020; 21 (12): 155165. doi: 10.1002/acm2.13081.CrossRefGoogle ScholarPubMed
Rojas-López, J A, Díaz Moreno, R M, Venencia, C D Use of genetic algorithm for PTV optimization in single isocenter multiple metastases radiosurgery treatments with Brainlab Elements™. Phys Med 2021; 86: 8290. doi: 10.1016/j.ejmp.2021.05.031.CrossRefGoogle ScholarPubMed
Palmer, J D, Sebastian, N T, Chu, J et al. Single-isocenter multitarget stereotactic radiosurgery is safe and effective in the treatment of multiple brain metastases. Adv Radiat Oncol 2019; 5 (1): 7076. doi: 10.1016/j.adro.2019.08.013.CrossRefGoogle ScholarPubMed
Wu, Q, Snyder, K C, Liu, C et al. Optimization of treatment geometry to reduce normal brain dose in radiosurgery of multiple brain metastases with single-isocenter volumetric modulated arc therapy. Sci Rep 2016; 6: 34511. doi: 10.1038/srep34511.CrossRefGoogle ScholarPubMed
Pudsey, L M M, Biasi, G, Ralston, A et al. Detection of rotational errors in single-isocenter multiple-target radiosurgery: is a routine off-axis Winston-Lutz test necessary? J Appl Clin Med Phys 2022; 23 (9): e13665. doi: 10.1002/acm2.13665.CrossRefGoogle ScholarPubMed
Lutz, W, Winston, K R, Maleki, N A system for stereotactic radiosurgery with a linear accelerator. Int J Radiat Oncol Biol Phys 1988; 14 (2): 373381. doi: 10.1016/0360-3016(88)90446-4.CrossRefGoogle ScholarPubMed
Schell, M C, Bova, F J, Larson, D A et al. Stereotactic radiosurgery. The report of AAPM task group 42. Med Phys 1995; 188. doi. https://doi.org/10.37206/53.Google Scholar
Rowshanfarzad, P, Sabet, M, O’Connor, D J et al. Isocenter verification for linac-based stereotactic radiation therapy: review of principles and techniques. J Appl Clin Med Phys 2011; 12 (4): 3645. doi: 10.1120/jacmp.v12i4.3645.CrossRefGoogle ScholarPubMed
Jones, J, Childress, N, Kry, S SU-E-T-84: development of a modified Winston-Lutz test for evaluating errors in IGRT based setups. Med Phys 2011; 38.6Part11: 35053505. https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.3612035.CrossRefGoogle Scholar
Varian Medical Systems On-Board Imager (OBI) Advanced Imaging Maintenance Manual, Electronic Document AQ9 40 B505010R01B. Palo Alto, USA: Varian Medical Systems, 2015.Google Scholar
Ravindran, P B A study of Winston-Lutz test on two different electronic portal imaging devices and with low energy imaging. Australas Phys Eng Sci Med 2016; 39 (3): 677685. doi: 10.1007/s13246-016-0463-9.CrossRefGoogle ScholarPubMed
Wack, L J, Exner, F, Wegener, S et al. The impact of isocentric shifts on delivery accuracy during the irradiation of small cerebral targets-quantification and possible corrections. J Appl Clin Med Phys 2020; 21 (5): 5664. doi: 10.1002/acm2.12854.CrossRefGoogle ScholarPubMed
Hanley, J, Dresser, S, Simon, W et al. AAPM Task Group 198 Report: an implementation guide for TG 142 quality assurance of medical accelerators. Med Phys 2021; 48 (10): e830e885. doi: 10.1002/mp.14992.CrossRefGoogle ScholarPubMed
Klein, E E, Hanley, J, Bayouth, J et al. Task Group 142, American Association of Physicists in Medicine. Task group 142 report: quality assurance of medical accelerators. Med Phys 2009; 36 (9): 41974212. doi: 10.1118/1.3190392.CrossRefGoogle Scholar
Eagle, A, Tallhamer, M, Keener, J et al. A simplified and effective off-axis Winston-Lutz for single-isocenter multi-target SRS. J Appl Clin Med Phys 2022: e13816. doi: 10.1002/acm2.13816.Google ScholarPubMed
Szweda, H, Graczyk, K, Radomiak, D et al. Comparison of three different phantoms used for Winston-Lutz test with Artiscan software. Rep Pract Oncol Radiother 2020; 25 (3): 351354. doi: 10.1016/j.rpor.2020.03.003.CrossRefGoogle ScholarPubMed
Li, J, Shi, W, Andrews, D et al. Comparison of online 6 degree-of-freedom image registration of Varian TrueBeam Cone-Beam CT and BrainLab ExacTrac X-Ray for intracranial radiosurgery. Technol Cancer Res Treat 2017; 16 (3): 339343. doi: 10.1177/1533034616683069.CrossRefGoogle ScholarPubMed
Ma, J, Chang, Z, Wang, Z et al. ExacTrac X-ray 6 degree-of-freedom image-guidance for intracranial non-invasive stereotactic radiotherapy: comparison with kilo-voltage cone-beam CT. Radiother Oncol 2009; 93 (3): 602608. doi: 10.1016/j.radonc.2009.09.009.CrossRefGoogle ScholarPubMed
Manger, R P, Paxton, A B, Pawlicki, T, Kim, G Y Failure mode and effects analysis and fault tree analysis of surface image guided cranial radiosurgery. Med Phys 2015; 42 (5): 24492461. doi: 10.1118/1.4918319.CrossRefGoogle ScholarPubMed
McKenna, J T The development and testing of a novel spherical radiotherapy phantom system for the commissioning and patient-specific quality assurance of mono-isocentric multiple mets SRS plans. Med Phys 2021; 48 (1): 105113. doi: 10.1002/mp.14565.CrossRefGoogle ScholarPubMed
Maurer, J, Sintay, B, Varchena, V. SU-E-T-52: a new device for quality assurance of a single isocenter technique for the simultaneous treatment of multiple brain metastases. Med Phys 2015; 42 (6): 3342.CrossRefGoogle Scholar
Institute of Radiooncology Dosimetric Parameters of the HD120 MLC. https://www.wienkav.at/kav/kfj/91033454/physik/tb/tb_hd120.htm. Accessed 6 December 2022.Google Scholar
Han, E Y, Diagaradjane, P, Luo, D et al. Validation of PTV margin for Gamma Knife Icon frameless treatment using a PseudoPatient® Prime anthropomorphic phantom. J Appl Clin Med Phys 2020; 21 (9): 278285. doi: 10.1002/acm2.12997.CrossRefGoogle ScholarPubMed
Yaqoub, M M Design & delivery of automated Winston-Lutz test for Isocentric & off-axis delivery stability utilizing Truebeam developer mode & electronic portal imaging device. UNLV Theses, Dissertations, Professional Papers, and Capstones. 2018; 3349. doi: http://dx.doi.org/10.34917/13568805.CrossRefGoogle Scholar
Shepard, D Quality assurance in stereotactic radiosurgery and fractionated stereotactic radiotherapy. AAPM 51st Annual Meeting. Anaheim, California, 2009. https://www.aapm.org/education/vl/vl.asp?id=228. Accessed December 1, 2022.Google Scholar
Alarcón, A, Venencia, D Automated Winston-Lutz test using XML script and developer mode in TrueBeam STx. AAPM 2019 Annual Meeting. San Antonio. PO-GePV-P-102.Google Scholar
Varian Medical Systems TrueBeam Developer Mode Version 2.0 User’s Manual. Palo Alto, USA: Varian Medical Systems, 2015.Google Scholar
Huang, Y, Zhao, B, Chetty, I J et al. Targeting accuracy of image-guided radiosurgery for intracranial lesions: a comparison across multiple linear accelerator platforms. Technol Cancer Res Treat 2016; 15 (2): 243248. doi: 10.1177/1533034615574385.CrossRefGoogle ScholarPubMed
Varian Medical Systems TrueBeam 2.5 Administration and Physics. DCID: TB2.5-CEM-02-B. Palo Alto, USA: Varian Medical Systems, 2017.Google Scholar
Clements, M, Beres, J, Shastri, G Isocenter Optimization. RIT Confidential 2019-07-01. USA: Radiological Imaging Technology, Inc., 2019.Google Scholar
Low, D A, Li, Z, Drzymala, R E Minimization of target positioning error in accelerator-based radiosurgery. Med Phys 1995; 22 (4): 443448. doi: 10.1118/1.597475.CrossRefGoogle ScholarPubMed
Brainlab, A G Exactrac. Version 6.1. User Manual, Volume 1/2. Edition 1.0. Germany. USA: Brainlab AG, 2014.Google Scholar
Hua, W, Xu, B, Zhang, X et al. Setup error and residual error analysis of ExacTrac X-ray image guidance system in stereotactic radiotherapy for brain metastases. J Radiat Res and App Sci 2022; 15 (4). doi: 10.1016/j.jrras.2022.100474.Google Scholar
BrainLab White Paper. iPlan® Automatic Image Fusion. Brainlab AG, 2011; 18. Available from: https://pdf.medicalexpo.com/pdf/brainlab-75290.html Google Scholar
Da Silva Mendes, V, Reiner, M, Huang, L et al. ExacTrac dynamic workflow evaluation: combined surface optical/thermal imaging and X-ray positioning. J Appl Clin Med Phys 2022; 23 (10): e13754. doi: 10.1002/acm2.13754.CrossRefGoogle ScholarPubMed
Brainlab Potential and challenges of surface guidance in radiation therapy. White Paper. https://www.brainlab.com/wp-content/uploads/2019/11/potential-and-challenges-of-sgrt_brainlab.pdf. Accessed May 30, 2023.Google Scholar
Meeks, S L, Mercado, C E, Popple, R A et al. Practical considerations for single isocenter LINAC radiosurgery of multiple brain metastases. Pract Radiat Oncol 2022; 12 (3): 195199. doi: 10.1016/j.prro.2021.09.007.CrossRefGoogle ScholarPubMed
Calmels, L, Blak Nyrup Biancardo, S, Sibolt, P et al. Single-isocenter stereotactic non-coplanar arc treatment of 200 patients with brain metastases: multileaf collimator size and setup uncertainties. Strahlenther Onkol 2022; 198 (5): 436447. doi: 10.1007/s00066-021-01846-6.CrossRefGoogle ScholarPubMed
Rahman, M, Lei, Y, Kalantzis, G QALMA: a computational toolkit for the analysis of quality protocols for medical linear accelerators in radiation therapy. SoftwareX 2018; 7: 101106. doi: 10.1016/j.softx.2018.03.003.CrossRefGoogle Scholar
Freislederer, P, Kügele, M, Öllers, M et al. Recent advanced in surface guided radiation therapy. Radiat Oncol 2020; 15 (1): 187. doi: 10.1186/s13014-020-01629-w. Erratum in: Radiat Oncol. 2020 Oct 24;15(1):244.CrossRefGoogle ScholarPubMed
Prentou, G, Pappas, E P, Logothetis, A et al. Dosimetric impact of rotational errors on the quality of VMAT-SRS for multiple brain metastases: comparison between single- and two-isocenter treatment planning techniques. J Appl Clin Med Phys 2020; 21 (3): 3244. doi: 10.1002/acm2.12815.CrossRefGoogle ScholarPubMed
Halvorsen, P H, Cirino, E, Das, I J et al. AAPM-RSS medical physics practice guideline 9.a. for SRS-SBRT. J Appl Clin Med Phys 2017; 18 (5): 1021. doi: 10.1002/acm2.12146.CrossRefGoogle ScholarPubMed
Chang, J A statistical model for analyzing the rotational error of single isocenter for multiple targets technique. Med Phys 2017; 44 (6): 21152123. doi: 10.1002/mp.12262.CrossRefGoogle ScholarPubMed
Kang, K M, Chai, G Y, Jeong, B K et al. Estimation of optimal margin for intrafraction movements during frameless brain radiosurgery. Med Phys 2013; 40 (5): 051716. doi: 10.1118/1.4801912.CrossRefGoogle ScholarPubMed
Tominaga, H, Araki, F, Shimohigashi, Y et al. Accuracy of positioning and irradiation targeting for multiple targets in intracranial image-guided radiation therapy: a phantom study. Phys Med Biol 2014; 59 (24): 77537766. doi: 10.1088/0031-9155/59/24/7753. Erratum in: Phys Med Biol. 2015 May 21;60(10):4225.CrossRefGoogle ScholarPubMed
Supplementary material: File

Rojas-López et al. supplementary material

Rojas-López et al. supplementary material

Download Rojas-López et al. supplementary material(File)
File 29.5 KB