Hostname: page-component-857557d7f7-fn92c Total loading time: 0 Render date: 2025-12-01T10:17:08.667Z Has data issue: false hasContentIssue false

NONCOMMUTATIVE IWASAWA THEORY OF ABELIAN VARIETIES OVER GLOBAL FUNCTION FIELDS

Published online by Cambridge University Press:  01 December 2025

LI-TONG DENG
Affiliation:
Tsinghua University , Beijing, 100084, China e-mail: dlt23@mails.tsinghua.edu.cn
YUKAKO KEZUKA
Affiliation:
Kanazawa University , Ishikawa 920-1192, Japan e-mail: kezuka@se.kanazawa-u.ac.jp
YONG-XIONG LI
Affiliation:
Yanqi Lake Beijing Institute of Mathematical Sciences and Applications , Beijing, China e-mail: yongxiongli@gmail.com
MENG FAI LIM*
Affiliation:
Central China Normal University , Hubei Province, 430079, China

Abstract

Let A be an abelian variety defined over a global function field F and let p be a prime distinct from the characteristic of F. Let $F_\infty $ be a p-adic Lie extension of F that contains the cyclotomic $\mathbb {Z}_p$-extension $F^{\mathrm {cyc}}$ of F. In this paper, we investigate the structure of the p-primary Selmer group $\mathrm {Sel}(A/F_\infty )$ of A over $F_\infty $. We prove the $\mathfrak {M}_H(G)$-conjecture for $A/F_\infty $. Furthermore, we show that both the $\mu $-invariant of the Pontryagin dual of the Selmer group $\mathrm {Sel}(A/F^{\mathrm {cyc}})$ and the generalized $\mu $-invariant of the Pontryagin dual of the Selmer group $\mathrm {Sel}(A/F_\infty )$ are zero, thereby proving Mazur’s conjecture for $A/F$. We then relate the order of vanishing of the characteristic elements, evaluated at Artin representations, to the corank of the Selmer group of the corresponding twist of A over the base field F. Assuming the finiteness of the Tate–Shafarevich group, we establish that this corank equals the order of vanishing of the L-function of $A/F$ at $s=1$. Finally, we extend a theorem of Sechi—originally proved for elliptic curves without complex multiplication—to abelian varieties over global function fields. This is achieved by adapting the notion of generalized Euler characteristic, introduced by Zerbes for elliptic curves over number fields. This new invariant allows us, via Akashi series, to relate the generalized Euler characteristic of $\mathrm {Sel}(A/F_\infty )$ to the Euler characteristic of $\mathrm {Sel}(A/F^{\mathrm {cyc}})$.

MSC classification

Information

Type
Research Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Communicated by Daniel Chan

The second author was partially supported by the ANR project Coloss, the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 101026826, and JSPS KAKENHI Grant JP25K17227.

References

Ardakov, K. and Wadsley, S. J., ‘Characteristic elements for p-torsion Iwasawa modules’, J. Algebraic Geom. 15 (2006), 339377.10.1090/S1056-3911-05-00415-7CrossRefGoogle Scholar
Bandini, A. and Valentino, M., ‘Control theorems for $l$ -adic Lie extensions of global function fields’, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 14(4) (2015), 10651092.Google Scholar
Burns, D., ‘On main conjectures in non-commutative Iwasawa theory and related conjectures’, J. reine angew. Math. 698 (2015), 105159.10.1515/crelle-2013-0001CrossRefGoogle Scholar
Burns, D. and Venjakob, O., ‘On descent theory and main conjectures in non-commutative Iwasawa theory’, J. Inst. Math. Jussieu 10(1) (2011), 59118.10.1017/S147474800900022XCrossRefGoogle Scholar
Clark, P. L. and Xarles, X., ‘Local bounds for torsion points on abelian varieties’, Canad. J. Math. 60(3) (2008), 532555.10.4153/CJM-2008-026-xCrossRefGoogle Scholar
Coates, J., ‘Fragments of the ${\mathrm{GL}}_2$ Iwasawa theory of elliptic curves without complex multiplication’, in: Arithmetic Theory of Elliptic Curves (Cetraro, 1997), Lecture Notes in Mathematics, 1716 (ed. C. Viola) (Springer, Berlin, 1999), 150.10.1007/BFb0093451CrossRefGoogle Scholar
Coates, J., Fukaya, T., Kato, K. and Sujatha, R., ‘Root numbers, Selmer groups, and non-commutative Iwasawa theory’, J. Algebraic Geom. 19(1) (2010), 1997.10.1090/S1056-3911-09-00504-9CrossRefGoogle Scholar
Coates, J., Fukaya, T., Kato, K., Sujatha, R. and Venjakob, O., ‘The $\mathrm{G}{\mathrm{L}}_2$ main conjecture for elliptic curves without complex multiplication’, Publ. Math. Inst. Hautes Études Sci. 101 (2005), 163208.10.1007/s10240-004-0029-3CrossRefGoogle Scholar
Coates, J. and Howson, S., ‘Euler characteristics and elliptic curves. II’, J. Math. Soc. Japan 53(1) (2001), 175235.10.2969/jmsj/05310175CrossRefGoogle Scholar
Coates, J., Schneider, P. and Sujatha, R., ‘Links between cyclotomic and $\mathrm{G}{\mathrm{L}}_2$ Iwasawa theory’, Doc. Math. 8 (2003), 187215 (Extra Volume: Kazuya Kato’s Fiftieth Birthday).Google Scholar
Coates, J. and Sujatha, R., ‘On the ${\mathfrak{M}}_{\mathrm{H}}\left(\mathrm{G}\right)$ -conjecture’, in: Non-Abelian Fundamental Groups and Iwasawa Theory, London Mathematical Society Lecture Note Series, 393 (eds. J. Coates, M. Kim, F. Pop, M. Saidi and P. Schneider) (Cambridge University, Cambridge, 2012), 132161.Google Scholar
Coates, J. and Sujatha, R., Galois Cohomology of Elliptic Curves, Tata Institute of Fundamental Research Lectures on Mathematics, 88 (Narosa Publishing House, New Delhi, 2010).Google Scholar
Dixon, J. D., du Sautoy, M. P. F., Mann, A. and Segal, D., Analytic pro– $p$ Groups, 2nd edn, Cambridge Studies in Advanced Mathematics, 61 (Cambridge University Press, Cambridge, 1999).Google Scholar
Drinen, M. J., ‘Finite submodules and Iwasawa $\mu$ -invariants’, J. Number Theory 93(1) (2002), 122.10.1006/jnth.2001.2717CrossRefGoogle Scholar
Fukaya, T. and Kato, K., ‘A formulation of conjectures on $p$ -adic zeta functions in noncommutative Iwasawa theory’, in: Proceedings of the St. Petersburg Mathematical Society, Volume XII, American Mathematical Society Translations: Series 2, 219 (ed. N. N. Uraltseva) (American Mathematical Society, Providence, RI, 2006), 185.Google Scholar
Gold, R. and Kisilevsky, H., ‘On geometric ${\mathbb{Z}}_p$ -extensions of function fields’, Manuscripta Math. 62 (1988), 145161.10.1007/BF01278975CrossRefGoogle Scholar
Greenberg, R., ‘Iwasawa theory for elliptic curves’, in: Arithmetic Theory of Elliptic Curves (Cetraro, 1997), Lecture Notes in Mathematics, 1716 (ed. C. Viola) (Springer, Berlin, 1999), 51144.10.1007/BFb0093453CrossRefGoogle Scholar
Howson, S., ‘Euler characteristics as invariants of Iwasawa modules’, Proc. Lond. Math. Soc. (3) 85(3) (2002), 634658.10.1112/S0024611502013680CrossRefGoogle Scholar
Jannsen, U., ‘Iwasawa modules up to isomorphism’, in: Algebraic Number Theory, Advanced Studies in Pure Mathematics, 17 (eds. J. Coates, R. Greenberg, B. Mazur and I. Satake) (Academic Press, Boston, MA, 1989), 171207.Google Scholar
Jannsen, U., ‘A spectral sequence for Iwasawa adjoints’, Münster J. Math. 7(1) (2014), 135148.Google Scholar
Kato, K., ‘ p-adic Hodge theory and values of zeta functions of modular forms’, Asterisque 295 (2004), 117290.Google Scholar
Kato, K. and Trihan, F., ‘On the conjectures of Birch and Swinnerton–Dyer in characteristic $p>0$ ’, Invent. Math. 153 (2003), 537592.10.1007/s00222-003-0299-2CrossRef0$+’,+Invent.+Math.+153+(2003),+537–592.>Google Scholar
Lai, K. F., Longhi, I., Suzuki, T., Tan, K.-S. and Trihan, F., ‘On the $\mu$ -invariants of abelian varieties over function fields of positive characteristic’, Algebra Number Theory 15(4) (2021), 863907.10.2140/ant.2021.15.863CrossRefGoogle Scholar
Lai, K. F., Longhi, I., Tan, K.-S. and Trihan, F., ‘The Iwasawa main conjecture for semistable abelian varieties over function fields’, Math. Z. 282 (2016), 485510.10.1007/s00209-015-1550-4CrossRefGoogle Scholar
Lim, M. F., ‘ ${\mathfrak{M}}_{\mathrm{H}}\left(\mathrm{G}\right)$ -property and congruence of Galois representations’, J. Ramanujan Math. Soc. 33(1) (2018), 3774.Google Scholar
Lim, M. F., ‘On the control theorem for fine Selmer groups and the growth of fine Tate–Shafarevich groups in ${\mathbb{Z}}_p$ -extensions’, Doc. Math. 25 (2020), 24452471.10.4171/dm/803CrossRefGoogle Scholar
Lim, M. F., ‘On order of vanishing of characteristic elements’, Forum Math. 34(4) (2022), 10511080.Google Scholar
Lim, M. F., ‘Comparing direct limit and inverse limit of even $K$ -groups in multiple ${\mathbb{Z}}_p$ -extensions’, J. Théor. Nombres Bordeaux 36(2) (2024), 537555.10.5802/jtnb.1288CrossRefGoogle Scholar
Lim, M. F. and Sharifi, R., ‘Nekovář duality over $p$ -adic Lie extensions of global fields’, Doc. Math. 18 (2013), 621678.10.4171/dm/410CrossRefGoogle Scholar
Mazur, B., ‘Rational points of abelian varieties in towers of number fields’, Invent. Math. 18 (1972), 183266.10.1007/BF01389815CrossRefGoogle Scholar
Milne, J., ‘On a conjecture of Artin–Tate’, Ann. of Math. (2) 102 (1975), 91105.10.2307/1971042CrossRefGoogle Scholar
Milne, J., Arithmetic Duality Theorems, 2nd edn (BookSurge, LLC, Charleston, SC, 2006).Google Scholar
Nekovář, J., ‘Selmer complexes’, Astérisque 310 (2006), viii+559 pages.Google Scholar
Neukirch, J., Schmidt, A. and Wingberg, K., Cohomology of Number Fields, 2nd edn, Grundlehren der Mathematischen Wissenschaften, 323 (Springer-Verlag, Berlin, 2008).10.1007/978-3-540-37889-1CrossRefGoogle Scholar
Ochi, Y. and Venjakob, O., ‘On the ranks of Iwasawa modules over $p$ -adic Lie extensions’, Math. Proc. Cambridge Philos. Soc. 135 (2003), 2543.10.1017/S0305004102006564CrossRefGoogle Scholar
Ochiai, T. and Trihan, F., ‘On the Selmer groups of abelian varieties over function fields of characteristic $\mathrm{p}>0$ ’, Math. Proc. Cambridge Philos. Soc. 146(1) (2009), 2343.10.1017/S0305004108001801CrossRef0$+’,+Math.+Proc.+Cambridge+Philos.+Soc.+146(1)+(2009),+23–43.>Google Scholar
Ray, A., ‘Iwasawa theory of fine Selmer groups associated to Drinfeld modules’, Mathematika 70(3) (2024), e12264.10.1112/mtk.12264CrossRefGoogle Scholar
Sechi, G., ‘ ${\mathrm{GL}}_2$ Iwasawa theory of elliptic curves over global function fields’, PhD Thesis, University of Cambridge, 2006.Google Scholar
Serre, J. P., Local Algebra, Springer Monographs in Mathematics (Springer-Verlag, Berlin, 2000).Google Scholar
Tate, J., ‘On the conjectures of Birch and Swinnerton–Dyer and a geometric analog’, in: Seminaire Bourbaki, Volume 9, Exposé no, 306 (Société mathématique de France, Paris, 1995), 415440.Google Scholar
Trihan, F. and Vauclair, D., ‘On the non commutative Iwasawa main conjecture for abelian varieties over function fields’, Doc. Math. 24 (2019), 473522.Google Scholar
Ulmer, D., ‘Elliptic curves with large rank over function fields’, Ann. of Math. (2) 155(1) (2002), 295315.10.2307/3062158CrossRefGoogle Scholar
Valentino, M., ‘On Euler characteristics of Selmer groups for abelian varieties over global function fields’, Arch. Math. (Basel) 106(2) (2016), 117128.10.1007/s00013-015-0858-yCrossRefGoogle Scholar
Venjakob, O., ‘On the structure theory of the Iwasawa algebra of a $p$ -adic Lie group’, J. Eur. Math. Soc. 4(3) (2002), 271311.10.1007/s100970100038CrossRefGoogle Scholar
Venjakob, O., ‘Characteristic elements in noncommutative Iwasawa theory’, J. reine angew. Math. 583 (2005), 193236.10.1515/crll.2005.2005.583.193CrossRefGoogle Scholar
Witte, M., ‘Non-commutative Iwasawa main conjecture’, Int. J. Number Theory 16(9) (2020), 20412094.10.1142/S1793042120501067CrossRefGoogle Scholar
Zerbes, S., ‘Selmer groups over $p$ -adic Lie extensions. I’, J. Lond. Math. Soc. (2) 70(3) (2004), 586608.10.1112/S002461070400568XCrossRefGoogle Scholar
Zerbes, S., ‘Generalised Euler characteristics of Selmer groups’, Proc. Lond. Math. Soc. (3) 98(3) (2009), 775796.10.1112/plms/pdn049CrossRefGoogle Scholar
Zerbes, S., ‘Akashi series of Selmer groups’, Math. Proc. Cambridge Philos. Soc. 151(2) (2011), 229243.10.1017/S0305004111000211CrossRefGoogle Scholar