Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-06-12T01:56:10.789Z Has data issue: false hasContentIssue false

Enumerating p-Groups

Published online by Cambridge University Press:  09 April 2009

Bettina Eick
Affiliation:
Fachbereich Mathematik Universität Kassel Heinrich-Plett-Str. 40 34132 Kassel Germany e-mail: eick@mathematik.uni-kassel.de
E. A. O'Brien
Affiliation:
Department of Mathmatics University of Auckland Private Bag 92019 Auckland New Zealand e-mail: obrien@math.auckland.ac.nz
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present a new algorithm which uses a cohomological approach to determine the groups of order pn, where p is a prime. We develop two methods to enumerate p-groups using the Cauchy-Frobenius Lemma. As an application we show that there are 10 494213 groups of order 29.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 20D15.

MSC classification

Type
Research Article
Copyright
Copyright © Australian Mathematical Society 1999

References

[1]Besche, H. U. and Eick, B., ‘Construction of finite groups’, J. Symbolic Comput. 27 (1999), 387404.CrossRefGoogle Scholar
[2]Besche, H. U. and Eick, B., ‘The groups of order at most 1000 except 512 and 768’, J. Symbolic Comput. 27 (1999), 405413.CrossRefGoogle Scholar
[3]Besche, H. U. and Eick, B., ‘The groups of order q n p’, Technical Report.Google Scholar
[4]Birkhoff, G., ‘Subgroups of Abelian groups’, Proc. London Math. Soc. 38 (1934), 385401.Google Scholar
[5]Bosma, W., Cannon, J. and Playoust, C., ‘The MAGMA algebra system I: The user language’, J. Symbolic Comput. 24 (1997), 235265.CrossRefGoogle Scholar
[6]Higman, G., ‘Enumerating p-groups I: Inequalities’, Proc. London Math. Soc. 10 (1960), 2430.CrossRefGoogle Scholar
[7]James, R., Newman, M. F. and O'Brien, E. A., ‘The groups of order 128’, J. Algebra 129 (1990), 136158.CrossRefGoogle Scholar
[8]Neubüser, J., ‘Investigations of groups on computers’, in: Computational problems in abstract algebra (Pergamon Press, Oxford, 1967) pp. 119.Google Scholar
[9]Newman, M. F., ‘Determination of groups of prime-power order’, in: Group theory (Canberra 1975), Lecture Notes in Math. 573 (Springer, Berlin, 1977) pp. 7384.CrossRefGoogle Scholar
[10]O'Brien, E. A., ‘The p-group generation algorithm’, J. Symbolic Comput. 9 (1990), 677698.CrossRefGoogle Scholar
[11]O'Brien, E. A., ‘The groups of order 256’, J. Algebra 143 (1991), 219235.CrossRefGoogle Scholar
[12]O'Brien, E. A., ‘Compouting automorphism groups of p-groups’, in: Computational algebra and number theory (Sydney, 1992) (Kluwer Academic Publ., Dordrecht, 1995) pp. 8390.CrossRefGoogle Scholar
[13]O'Brien, E. A., ‘Bibliography on the determination of finite groups’, Available from http://www.math.auckland.ac.nz/~obrien.Google Scholar
[14]Robinson, D. J., A course in the theory of groups, Graduate Texts in Math. 80, 2nd Edition (Springer, New York, 1996).CrossRefGoogle Scholar
[15]Sims, C. C., ‘Enumerationg p-groups’, Proc. London Math. Soc. 15 (1965), 151166.CrossRefGoogle Scholar
[16]Sims, C. C., Computation with finite finitely presented groups (Cambridge University Press, New York, 1994).CrossRefGoogle Scholar
[17]The GAP Team, GAP - Groups, algorithms, and programming, version 4, Lehrstuhl D für Mathematik, RWTH Aachen, and School of Mathematical and Computational Sciences, University of St Andrews, 1999.Google Scholar
[18]Vaughan-Lee, M. R., ‘An aspect of the nilpotent quotient algorithm’, in: Computational group theory (Durham, 1982) (Academic Press, London, 1984) pp. 7683.Google Scholar
[19]Wegner, A., The construction of finite soluble factor groups of finitely presented groups and its applications (Ph.D. Thesis, University of St Andrews, 1992).Google Scholar