Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-07T16:17:08.054Z Has data issue: false hasContentIssue false

Age-Related Atrophy and Compensatory Neural Networks in Reading Comprehension

Published online by Cambridge University Press:  29 April 2019

Megan C. Fitzhugh
Affiliation:
School of Life Sciences, Neuroscience Interdisciplinary Graduate Degree Program, Arizona State University, Tempe, AZ, USA Department of Speech and Hearing Science, Arizona State University, Tempe, AZ, USA
B. Blair Braden
Affiliation:
Department of Speech and Hearing Science, Arizona State University, Tempe, AZ, USA
Marwan N. Sabbagh
Affiliation:
Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
Corianne Rogalsky
Affiliation:
Department of Speech and Hearing Science, Arizona State University, Tempe, AZ, USA
Leslie C. Baxter*
Affiliation:
Department of Neuropsychology, Mayo Clinic Arizona, Phoenix, AZ, USA
*
Correspondence and reprint requests to: Dr. Leslie C. Baxter, Department of Neuropsychology, Mayo Clinic Arizona, 5777 E. Mayo Blvd., Phoenix, AZ, 85054. E-mail: baxter.leslie@mayo.edu

Abstract

Objectives: Despite changes to brain integrity with aging, some functions like basic language processes remain remarkably preserved. One theory for the maintenance of function in light of age-related brain atrophy is the engagement of compensatory brain networks. This study examined age-related changes in the neural networks recruited for simple language comprehension. Methods: Sixty-five adults (native English-speaking, right-handed, and cognitively normal) aged 17–85 years underwent a functional magnetic resonance imaging (fMRI) reading paradigm and structural scanning. The fMRI data were analyzed using independent component analysis to derive brain networks associated with reading comprehension. Results: Two typical frontotemporal language networks were identified, and these networks remained relatively stable across the wide age range. In contrast, three attention-related networks showed increased activation with increasing age. Furthermore, the increased recruitment of a dorsal attention network was negatively correlated to gray matter thickness in temporal regions, whereas an anterior frontoparietal network was positively correlated to gray matter thickness in insular regions. Conclusions: We found evidence that older adults can exert increased effort and recruit additional attentional resources to maintain their reading abilities in light of increased cortical atrophy.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2019. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexander, G.E., Bergfield, K.L., Chen, K., Reiman, E.M., Hanson, K.D., Lin, L., Bandy, D., Caselli, R.J., & Moeller, J.R. (2012). Gray matter network associated with risk for Alzheimer’s disease in young to middle-aged adults. Neurobiology of Aging, 33(12), 27232732. doi: 10.1016/j.neurobiolaging.2012.01.014.CrossRefGoogle ScholarPubMed
Alexander, G.E., Chen, K., Merkley, T.L., Reiman, E.M., Caselli, R.J., Aschenbrenner, M., Santerre-Lemmon, L., Lewis, D.J., Pietrini, P., Teipel, S.J., & Moeller, J.R. (2006). Regional network of magnetic resonance imaging gray matter volume in healthy aging. NeuroReport, 17(10), 951. doi: 10.1097/01.wnr.0000220135.16844.b6.CrossRefGoogle ScholarPubMed
Andrews-Hanna, J.R., Snyder, A.Z., Vincent, J.L., Lustig, C., Head, D., Raichle, M.E., & Buckner, R.L. (2007). Disruption of large-scale brain systems in advanced aging. Neuron, 56(5), 924935. doi: 10.1016/j.neuron.2007.10.038.CrossRefGoogle ScholarPubMed
Baltes, P.B. & Lindenberger, U. (1997). Emergence of a powerful connection between sensory and cognitive functions across the adult life span: a new window to the study of cognitive aging? Psychology and Aging, 12(1), 1221.CrossRefGoogle Scholar
Beck, A.T., Steer, R.A., & Brown, G.K. (1996). Beck depression inventory-II. San Antonio, 78(2), 490498.Google Scholar
Bergfield, K.L., Hanson, K.D., Chen, K., Teipel, S.J., Hampel, H., Rapoport, S.I., Moeller, J.R., & Alexander, G.E. (2010). Age-related networks of regional covariance in MRI gray matter: reproducible multivariate patterns in healthy aging. NeuroImage, 49(2), 17501759. doi: 10.1016/j.neuroimage.2009.09.051.CrossRefGoogle ScholarPubMed
Binder, J.R., Frost, J.A., Hammeke, T.A., Bellgowan, P.S.F., Springer, J.A., Kaufman, J.N., & Possing, E.T. (2000). Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex, 10(5), 512528. doi: 10.1093/cercor/10.5.512.CrossRefGoogle ScholarPubMed
Binder, J.R., Desai, R.H., Graves, W.W., & Conant, L.L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19(12), 27672796. doi: 10.1093/cercor/bhp055.CrossRefGoogle ScholarPubMed
Burke, D.M. & Shafto, M.A. (2008). Language and aging. In The handbook of aging and cognition. Informa UK Limited. Retrieved from doi: 10.4324/9780203837665.ch8.Google Scholar
Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychology and Aging, 17(1), 85100. http://dx.doi.org.ezproxy1.lib.asu.edu/10.1037/0882-7974.17.1.85.CrossRefGoogle ScholarPubMed
Calhoun, V.D. & de Lacy, N. (2017). Ten key observations on the analysis of resting-state functional MR imaging data using independent component analysis. Neuroimaging Clinics of North America, 27(4), 561579. doi: 10.1016/j.nic.2017.06.012.CrossRefGoogle ScholarPubMed
Calhoun, V.D., Kiehl, K.A., & Pearlson, G.D. (2008). Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Human Brain Mapping, 29(7), 828838. doi: 10.1002/hbm.20581.CrossRefGoogle ScholarPubMed
Campbell, K.L., Samu, D., Davis, S.W., Geerligs, L., Mustafa, A., Tyler, L.K., & others. (2016). Robust resilience of the frontotemporal syntax system to aging. The Journal of Neuroscience, 36(19), 52145227.CrossRefGoogle ScholarPubMed
Caplan, D., DeDe, G., Waters, G., Michaud, J., & Tripodis, Y. (2011). Effects of age, speed of processing, and working memory on comprehension of sentences with relative clauses. Psychology and Aging, 26(2), 439450. doi: 10.1037/a0021837.CrossRefGoogle ScholarPubMed
Caplan, D. & Waters, G. (2005). The relationship between age, processing speed, working memory capacity, and language comprehension. Memory, 13(3-4), 403413. doi: 10.1080/09658210344000459.CrossRefGoogle Scholar
Choi, W., Desai, R.H., & Henderson, J.M. (2014). The neural substrates of natural reading: a comparison of normal and nonword text using eyetracking and fMRI. Frontiers in Human Neuroscience, 8. doi: 10.3389/fnhum.2014.01024.CrossRefGoogle Scholar
Cole, M.W. & Schneider, W. (2007). The cognitive control network: integrated cortical regions with dissociable functions. NeuroImage, 37(1), 343360. doi: 10.1016/j.neuroimage.2007.03.071.CrossRefGoogle ScholarPubMed
Corbetta, M. & Shulman, G.L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201215. doi: 10.1038/nrn755.CrossRefGoogle Scholar
Dale, A.M., Fischl, B., & Sereno, M.I. (1999). Cortical surface-based analysis: I. Segmentation and surface reconstruction. Neuroimage, 9(2), 179194.CrossRefGoogle ScholarPubMed
Damoiseaux, J.S., Beckmann, C.F., Arigita, E.J.S., Barkhof, F., Scheltens, P., Stam, C.J., Smith, S.M., & Rombouts, S.A.R.B. (2008). Reduced resting-state brain activity in the “default network” in normal aging. Cerebral Cortex, 18(8), 18561864. doi: 10.1093/cercor/bhm207.CrossRefGoogle Scholar
Davis, S.W., Zhuang, J., Wright, P., & Tyler, L.K. (2014). Age-related sensitivity to task-related modulation of language-processing networks. Neuropsychologia, 63, 107115. doi: 10.1016/j.neuropsychologia.2014.08.017.CrossRefGoogle ScholarPubMed
DeDe, G. (2014). Sentence comprehension in older adults: evidence for risky processing strategies. Experimental Aging Research, 40(4), 436454. doi: 10.1080/0361073X.2014.926775.CrossRefGoogle ScholarPubMed
DeDe, G. & Flax, J.K. (2016). Language comprehension in aging. In Cognition, language and aging (pp. 107133). Amsterdam, The Netherlands: John Benjamins Publishing Company.Google Scholar
Démonet, J.-F., Thierry, G., & Cardebat, D. (2005). Renewal of the neurophysiology of language: functional neuroimaging. Physiological Reviews, 85(1), 4995. doi: 10.1152/physrev.00049.2003.CrossRefGoogle ScholarPubMed
Drag, L.L. & Bieliauskas, L.A. (2010). Contemporary review 2009: cognitive aging. Journal of Geriatric Psychiatry and Neurology, 23(2), 7593. doi: 10.1177/0891988709358590.CrossRefGoogle ScholarPubMed
Drag, L.L., Light, S.N., Langenecker, S.A., Hazlett, K.E., Wilde, E.A., Welsh, R., Steinberg, B.A., & Bieliauskas, L.A. (2016). Patterns of frontoparietal activation as a marker for unsuccessful visuospatial processing in healthy aging. Brain Imaging and Behavior, 10(3), 686696. doi: 10.1007/s11682-015-9428-y.CrossRefGoogle ScholarPubMed
Duncan, J. (2013). The structure of cognition: attentional episodes in mind and brain. Neuron, 80(1), 3550. doi: 10.1016/j.neuron.2013.09.015.CrossRefGoogle ScholarPubMed
Eckert, M.A., Walczak, A., Ahlstrom, J., Denslow, S., Horwitz, A., & Dubno, J.R. (2008). Age-related effects on word recognition: reliance on cognitive control systems with structural declines in speech-responsive cortex. JARO, 9(2), 252259. doi: 10.1007/s10162-008-0113-3.CrossRefGoogle ScholarPubMed
Erb, J. & Obleser, J. (2013). Upregulation of cognitive control networks in older adults’ speech comprehension. Frontiers in Systems Neuroscience, 7. doi: 10.3389/fnsys.2013.00116.CrossRefGoogle ScholarPubMed
Fernandez, G., Specht, K., Weis, S., Tendolkar, I., Reuber, M., Fell, J., Klaver, P., Ruhlmann, J., Reul, J., & Elger, C.E. (2003). Intrasubject reproducibility of presurgical language lateralization and mapping using fMRI. Neurology, 60(6), 969975. doi: 10.1212/01.WNL.0000049934.34209.2E.CrossRefGoogle ScholarPubMed
Ferstl, E.C., Neumann, J., Bogler, C., & von Cramon, D.Y. (2008). The extended language network: a meta-analysis of neuroimaging studies on text comprehension. Human Brain Mapping, 29(5), 581593. doi: 10.1002/hbm.20422.CrossRefGoogle ScholarPubMed
Fischl, B. (2012). FreeSurfer. NeuroImage, 62(2), 774781. doi: 10.1016/j.neuroimage.2012.01.021.CrossRefGoogle ScholarPubMed
Fischl, B. & Dale, A.M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences, 97(20), 1105011055.CrossRefGoogle ScholarPubMed
Fjell, A.M., Westlye, L.T., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., Agartz, I., Salat, D.H., Greve, D.N., Fischl, B., & Walhovd, K.B. (2009). High consistency of regional cortical thinning in aging across multiple samples. Cerebral Cortex, 19(9), 20012012. doi: 10.1093/cercor/bhn232.CrossRefGoogle ScholarPubMed
Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). “Mini-mental state”: a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189198.CrossRefGoogle ScholarPubMed
Fox, M.D., Corbetta, M., Snyder, A.Z., Vincent, J.L., & Raichle, M.E. (2006). Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of Sciences, 103(26), 1004610051. doi: 10.1073/pnas.0604187103.CrossRefGoogle ScholarPubMed
Friederici, A.D. (2012). The cortical language circuit: from auditory perception to sentence comprehension. Trends in Cognitive Sciences, 16(5), 262268. doi: 10.1016/j.tics.2012.04.001.CrossRefGoogle ScholarPubMed
Glisky, E. (2007). Changes in cognitive function in human aging. In Brain aging (pp. 320). Informa UK Limited. Retrieved from http://dx.doi.org/10.1201/9781420005523.sec1.CrossRefGoogle ScholarPubMed
Gordon, P.C., Lowder, M.W., & Hoedemaker, R.S. (2016). Reading in normally aging adults. In Wright, H.H. (Ed.), Cognition, language and aging (pp. 165191). Amsterdam: John Benjamins Publishing Company. doi: 10.1075/z.200.07gor.Google Scholar
Grossman, M., Cooke, A., DeVita, C., Alsop, D., Detre, J., Chen, W., & Gee, J. (2002). Age-related changes in working memory during sentence comprehension: an fMRI study. NeuroImage, 15(2), 302317. doi: 10.1006/nimg.2001.0971.CrossRefGoogle Scholar
Hasson, U., Nusbaum, H.C., & Small, S.L. (2006). Repetition suppression for spoken sentences and the effect of task demands. Journal of Cognitive Neuroscience, 18(12), 20132029. doi: 10.1162/jocn.2006.18.12.2013.CrossRefGoogle ScholarPubMed
Henderson, J.M., Choi, W., Luke, S.G., & Desai, R.H. (2015). Neural correlates of fixation duration in natural reading: evidence from fixation-related fMRI. NeuroImage, 119, 390397. doi: 10.1016/j.neuroimage.2015.06.072.CrossRefGoogle ScholarPubMed
Hickok, G. & Poeppel, D. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience, 8(5), 393402. doi: 10.1038/nrn2113.CrossRefGoogle ScholarPubMed
Hugdahl, K., Raichle, M.E., Mitra, A., & Specht, K. (2015). On the existence of a generalized non-specific task-dependent network. Frontiers in Human Neuroscience, 9. doi: 10.3389/fnhum.2015.00430.CrossRefGoogle ScholarPubMed
James, P.J., Krishnan, S., & Aydelott, J. (2014). Working memory predicts semantic comprehension in dichotic listening in older adults. Cognition, 133(1), 3242. doi: 10.1016/j.cognition.2014.05.014.CrossRefGoogle ScholarPubMed
Jobard, G., Vigneau, M., Mazoyer, B., & Tzourio-Mazoyer, N. (2007). Impact of modality and linguistic complexity during reading and listening tasks. NeuroImage, 34(2), 784800. doi: 10.1016/j.neuroimage.2006.06.067.CrossRefGoogle ScholarPubMed
Kemtes, K.A. & Kemper, S. (1997). Younger and older adults’ on-line processing of syntactically ambiguous sentences. Psychology and Aging, 12(2), 362371. http://dx.doi.org.ezproxy1.lib.asu.edu/10.1037/0882-7974.12.2.362.CrossRefGoogle ScholarPubMed
Kim, D.I., Mathalon, D.H., Ford, J.M., Mannell, M., Turner, J.A., Brown, G.G., Belger, A., Gollub, R., Lauriello, J., Wible, C., & Calhoun, V.D. (2009). Auditory oddball deficits in schizophrenia: an independent component analysis of the fMRI multisite function BIRN study. Schizophrenia Bulletin, 35(1), 6781. doi: 10.1093/schbul/sbn133.CrossRefGoogle ScholarPubMed
Kliegl, R., Grabner, E., Rolfs, M., & Engbert, R. (2004). Length, frequency, and predictability effects of words on eye movements in reading. European Journal of Cognitive Psychology, 16(1–2), 262284.CrossRefGoogle Scholar
Li, Y.-O., Adalı, T., & Calhoun, V.D. (2007). Estimating the number of independent components for functional magnetic resonance imaging data. Human Brain Mapping, 28(11), 12511266.CrossRefGoogle ScholarPubMed
Mackenzie, C. (2000). The relevance of education and age in the assessment of discourse comprehension. Clinical Linguistics & Phonetics, 14(2), 151161.CrossRefGoogle Scholar
Madden, D.J. (2007). Aging and visual attention. Current Directions in Psychological Science, 16(2), 7074. doi: 10.1111/j.1467-8721.2007.00478.x.CrossRefGoogle ScholarPubMed
Mar, R.A. (2011). The neural bases of social cognition and story comprehension. Annual Review of Psychology, 62(1), 103134. doi: 10.1146/annurev-psych-120709-145406.CrossRefGoogle ScholarPubMed
Marstaller, L., Williams, M., Rich, A., Savage, G., & Burianová, H. (2015). Aging and large-scale functional networks: white matter integrity, gray matter volume, and functional connectivity in the resting state. Neuroscience, 290, 369378. doi: 10.1016/j.neuroscience.2015.01.049.CrossRefGoogle ScholarPubMed
McKeown, M.J., Hansen, L.K., & Sejnowski, T.J. (2003). Independent component analysis of functional MRI: what is signal and what is noise? Current Opinion in Neurobiology, 13(5), 620629.CrossRefGoogle ScholarPubMed
Meyer, B.J. (1987). Reading comprehension and aging. Annual Review of Gerontology and Geriatrics, 7 (1), 93115.Google ScholarPubMed
Morcom, A.M. & Henson, R.N.A. (2018). Increased prefrontal activity with aging reflects nonspecific neural responses rather than compensation. Journal of Neuroscience, 38(33), 73037313. doi: 10.1523/JNEUROSCI.1701-17.2018.CrossRefGoogle ScholarPubMed
Narain, C., Scott, S.K., Wise, R.J.S., Rosen, S., Leff, A., Iversen, S.D., & Matthews, P.M. (2003). Defining a left-lateralized response specific to intelligible speech using fMRI. Cerebral Cortex (New York, N.Y.: 1991), 13(12), 13621368.CrossRefGoogle ScholarPubMed
Nee, D.E., Brown, J.W., Askren, M.K., Berman, M.G., Demiralp, E., Krawitz, A., & Jonides, J. (2013). A meta-analysis of executive components of working memory. Cerebral Cortex, 23(2), 264282. doi: 10.1093/cercor/bhs007.CrossRefGoogle ScholarPubMed
Niendam, T.A., Laird, A.R., Ray, K.L., Dean, Y.M., Glahn, D.C., & Carter, C.S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective, & Behavioral Neuroscience, 12(2), 241268. doi: 10.3758/s13415-011-0083-5.CrossRefGoogle ScholarPubMed
Noppeney, U. & Price, C.J. (2004). An fMRI Study of Syntactic Adaptation. Journal of Cognitive Neuroscience, 16, 702713. doi: 10.1162/089892904323057399.CrossRefGoogle ScholarPubMed
Norman, S., Kemper, S., & Kynette, D. (1992). Adults’ reading comprehension: effects of syntactic complexity and working memory. Journal of Gerontology, 47(4), P258P265.CrossRefGoogle ScholarPubMed
Owen, A.M., McMillan, K.M., Laird, A.R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 4659. doi: 10.1002/hbm.20131.CrossRefGoogle ScholarPubMed
Park, D.C., Lautenschlager, G., Hedden, T., Davidson, N.S., Smith, A.D., & Smith, P.K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and Aging, 17(2), 299.CrossRefGoogle ScholarPubMed
Park, D.C., Polk, T.A., Park, R., Minear, M., Savage, A., & Smith, M.R. (2004). Aging reduces neural specialization in ventral visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 101(35), 1309113095. doi: 10.1073/pnas.0405148101.CrossRefGoogle ScholarPubMed
Park, D.C. & Reuter-Lorenz, P. (2009). The adaptive brain: aging and neurocognitive scaffolding. Annual Review of Psychology, 60(1), 173196. doi: 10.1146/annurev.psych.59.103006.093656.CrossRefGoogle ScholarPubMed
Peelle, J.E., Troiani, V., Wingfield, A., & Grossman, M. (2009). Neural processing during older adults’ comprehension of spoken sentences: age differences in resource allocation and connectivity. Cerebral Cortex, 20(4), 773782. doi: 10.1093/cercor/bhp142.CrossRefGoogle ScholarPubMed
Power, J.D., Cohen, A.L., Nelson, S.M., Wig, G.S., Barnes, K.A., Church, J.A., Vogel, A.C., Laumann, T.O., Miezin, F.M., Schlaggar, B.L., & Petersen, S.E. (2011). Functional network organization of the human brain. Neuron, 72(4), 665678. doi: 10.1016/j.neuron.2011.09.006.CrossRefGoogle ScholarPubMed
Price, C.J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage, 62(2), 816847. doi: 10.1016/j.neuroimage.2012.04.062.CrossRefGoogle ScholarPubMed
Rauschecker, J.P. & Scott, S.K. (2009). Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nature Neuroscience, 12(6), 718724. doi: 10.1038/nn.2331.CrossRefGoogle ScholarPubMed
Rayner, K., Reichle, E.D., Stroud, M.J., Williams, C.C., & Pollatsek, A. (2006). The effect of word frequency, word predictability, and font difficulty on the eye movements of young and older readers. Psychology and Aging, 21(3), 448.CrossRefGoogle Scholar
Raz, N., Gunning-Dixon, F., Head, D., Rodrigue, K.M., Williamson, A., & Acker, J.D. (2004). Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: replicability of regional differences in volume. Neurobiology of Aging, 25(3), 377396. doi: 10.1016/S0197-4580(03)00118-0.CrossRefGoogle Scholar
Raz, N. & Rodrigue, K.M. (2006). Differential aging of the brain: Patterns, cognitive correlates and modifiers. Neuroscience & Biobehavioral Reviews, 30(6), 730748. doi: 10.1016/j.neubiorev.2006.07.001.CrossRefGoogle ScholarPubMed
Reuter-Lorenz, P.A. & Cappell, K.A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17(3), 177182. doi: 10.1111/j.1467-8721.2008.00570.x.CrossRefGoogle Scholar
Reuter-Lorenz, P.A. & Park, D.C. (2014). How does it STAC up? Revisiting the scaffolding theory of aging and cognition. Neuropsychology Review, 24(3), 355370. doi: 10.1007/s11065-014-9270-9.CrossRefGoogle ScholarPubMed
Robertson, D.A., Gernsbacher, M.A., Guidotti, S.J., Robertson, R.R.W., Irwin, W., Mock, B.J., & Campana, M.E. (2000). Functional neuroanatomy of the cognitive process of mapping during discourse comprehension. Psychological Science, 11(3), 255260. doi: 10.1111/1467-9280.00251.CrossRefGoogle ScholarPubMed
Rogalsky, C. & Hickok, G. (2011). The Role of Broca’s area in sentence comprehension. Journal of Cognitive Neuroscience, 23(7), 16641680. doi: 10.1162/jocn.2010.21530.CrossRefGoogle ScholarPubMed
Rogalsky, C., Matchin, W., & Hickok, G. (2008). Broca’s area, sentence comprehension, and working memory: an fMRI study. Frontiers in Human Neuroscience, 2, 14. doi: 10.3389/neuro.09.014.2008.CrossRefGoogle Scholar
Saliasi, E., Geerligs, L., Lorist, M.M., & Maurits, N.M. (2014). Neural correlates associated with successful working memory performance in older adults as revealed by spatial ICA. PLoS ONE, 9(6), e99250. doi: 10.1371/journal.pone.0099250.CrossRefGoogle ScholarPubMed
Salthouse, T.A. (2010). Selective review of cognitive aging. Journal of the International Neuropsychological Society: JINS, 16(5), 754760. doi: 10.1017/S1355617710000706.CrossRefGoogle ScholarPubMed
Saur, D., Schelter, B., Schnell, S., Kratochvil, D., Küpper, H., Kellmeyer, P., Kümmerer, D., Klöppel, S., Glauche, V., Lange, R., & Weiller, C. (2010). Combining functional and anatomical connectivity reveals brain networks for auditory language comprehension. NeuroImage, 49(4), 31873197. doi: 10.1016/j.neuroimage.2009.11.009.CrossRefGoogle ScholarPubMed
Seeley, W.W., Menon, V., Schatzberg, A.F., Keller, J., Glover, G.H., Kenna, H., Reiss, A.L., & Greicius, M.D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27(9), 23492356. doi: 10.1523/JNEUROSCI.5587-06.2007.CrossRefGoogle ScholarPubMed
Shafto, M.A. & Tyler, L.K. (2014). Language in the aging brain: The network dynamics of cognitive decline and preservation. Science, 346(6209), 583587. doi: 10.1126/science.1254404.CrossRefGoogle Scholar
Stevens, M.C., Kiehl, K.A., Pearlson, G., & Calhoun, V.D. (2007). Functional neural circuits for mental timekeeping. Human Brain Mapping, 28(5), 394408. doi: 10.1002/hbm.20285.CrossRefGoogle ScholarPubMed
Stine-Morrow, E.A., Milinder, L.-A., Pullara, O., & Herman, B. (2001). Patterns of resource allocation are reliable among younger and older readers. Psychology and Aging, 16(1), 69.CrossRefGoogle ScholarPubMed
Storsve, A.B., Fjell, A.M., Tamnes, C.K., Westlye, L.T., Overbye, K., Aasland, H.W., & Walhovd, K.B. (2014). Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: Regions of accelerating and decelerating change. Journal of Neuroscience, 34(25), 84888498.CrossRefGoogle ScholarPubMed
Taler, V., Aaron, G.P., Steinmetz, L.G., & Pisoni, D.B. (2010). Lexical neighborhood density effects on spoken word recognition and production in healthy aging. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 65(5), 551560.CrossRefGoogle ScholarPubMed
Tomasi, D. & Volkow, N.D. (2012a). Aging and functional brain networks. Molecular Psychiatry, 17(5), 549558. doi: 10.1038/mp.2011.81.CrossRefGoogle ScholarPubMed
Tomasi, D. & Volkow, N.D. (2012b). Resting functional connectivity of language networks: Characterization and reproducibility. Molecular Psychiatry, 17(8), 841854. doi: 10.1038/mp.2011.177.CrossRefGoogle ScholarPubMed
Turken, A.U. & Dronkers, N.F. (2011). The neural architecture of the language comprehension network: Converging evidence from lesion and connectivity analyses. Frontiers in Systems Neuroscience, 5. doi: 10.3389/fnsys.2011.00001.CrossRefGoogle ScholarPubMed
Tyler, L.K. & Marslen-Wilson, W. (2008). Fronto-temporal brain systems supporting spoken language comprehension. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363(1493), 10371054.CrossRefGoogle ScholarPubMed
Tyler, L.K., Shafto, M.A., Randall, B., Wright, P., Marslen-Wilson, W.D., & Stamatakis, E.A. (2009). Preserving syntactic processing across the adult life span: The modulation of the frontotemporal language system in the context of age-related atrophy. Cerebral Cortex, 20(2), 352364. doi: 10.1093/cercor/bhp105.CrossRefGoogle ScholarPubMed
Vincent, J.L., Kahn, I., Snyder, A.Z., Raichle, M.E., & Buckner, R.L. (2008). Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100(6), 33283342. doi: 10.1152/jn.90355.2008.CrossRefGoogle ScholarPubMed
Vossel, S., Geng, J.J., & Fink, G.R. (2014). Dorsal and ventral attention systems. The Neuroscientist, 20(2), 150159. doi: 10.1177/1073858413494269.CrossRefGoogle ScholarPubMed
Walhovd, K.B., Fjell, A.M., Reinvang, I., Lundervold, A., Dale, A.M., Eilertsen, D.E., Quinn, B.T., Salat, D., Makris, N., & Fischl, B. (2005). Effects of age on volumes of cortex, white matter and subcortical structures. Neurobiology of Aging, 26(9), 12611270. doi: 10.1016/j.neurobiolaging.2005.05.020.CrossRefGoogle ScholarPubMed
Wingfield, A. & Grossman, M. (2006). Language and the aging brain: Patterns of neural compensation revealed by functional brain imaging. Journal of Neurophysiology, 96(6), 28302839. doi: 10.1152/jn.00628.2006.CrossRefGoogle ScholarPubMed
Wingfield, A., Peelle, J.E., & Grossman, M. (2003). Speech rate and syntactic complexity as multiplicative factors in speech comprehension by young and older adults. Aging, Neuropsychology, and Cognition, 10(4), 310322. doi: 10.1076/anec.10.4.310.28974.CrossRefGoogle Scholar
Wingfield, A. & Stine-Morrow, E.A. (2000). Language and speech. In The Handbook of Aging and Cognition (2nd ed., pp. 359416). Mahwah, NJ, USA: Lawrence Erlbaum Associates Publishers.Google Scholar
Wong, P.C.M., Jin, J.X., Gunasekera, G.M., Abel, R., Lee, E.R., & Dhar, S. (2009). Aging and cortical mechanisms of speech perception in noise. Neuropsychologia, 47(3), 693703. doi: 10.1016/j.neuropsychologia.2008.11.032.CrossRefGoogle ScholarPubMed
Xu, J., Potenza, M.N., & Calhoun, V.D. (2013). Spatial ICA reveals functional activity hidden from traditional fMRI GLM-based analyses. Frontiers in Neuroscience, 7. doi: 10.3389/fnins.2013.00154.CrossRefGoogle ScholarPubMed
Yeo, B.T.T., Krienen, F.M., Sepulcre, J., Sabuncu, M.R., Lashkari, D., Hollinshead, M., Roffman, J.L., Smoller, J.W., Zöllei, L., Polimeni, J.R., & Buckner, R.L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 11251165. doi: 10.1152/jn.00338.2011.Google ScholarPubMed
Yesavage, J.A., Brink, T.L., Rose, T.L., Lum, O., Huang, V., Adey, M., & Leirer, V.O. (1982). Development and validation of a geriatric depression screening scale: A preliminary report. Journal of Psychiatric Research, 17(1), 3749. doi: 10.1016/0022-3956(82)90033-4.CrossRefGoogle ScholarPubMed
Zhang, H.-Y., Chen, W.-X., Jiao, Y., Xu, Y., Zhang, X.-R., & Wu, J.-T. (2014). Selective vulnerability related to aging in large-scale resting brain networks. PloS One, 9(10), e108807. doi: 10.1371/journal.pone.0108807.CrossRefGoogle ScholarPubMed
Zhou, W. & Shu, H. (2017). A meta-analysis of functional magnetic resonance imaging studies of eye movements and visual word reading. Brain and Behavior, 7(5), e00683. doi: 10.1002/brb3.683.CrossRefGoogle ScholarPubMed
Supplementary material: File

Fitzhugh et al. supplementary material

Fitzhugh et al. supplementary material 1

Download Fitzhugh et al. supplementary material(File)
File 25.3 KB
Supplementary material: Image

Fitzhugh et al. supplementary material

Fitzhugh et al. supplementary material 2

Download Fitzhugh et al. supplementary material(Image)
Image 206.4 KB