Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-10T00:47:22.728Z Has data issue: false hasContentIssue false

Apolipoprotein E (APOE) ε4 Status Moderates the Relationship Between Close-Range Blast Exposure and Cognitive Functioning

Published online by Cambridge University Press:  03 November 2020

Thomas Wooten*
Affiliation:
Tufts University, Boston, MA02155, USA Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA02130, USA Boston Attention and Learning Laboratory, VA Boston Healthcare System, Boston, MA02130, USA
Danielle R. Sullivan
Affiliation:
National Center for PTSD, VA Boston Healthcare System, Boston, MA02130, USA Department of Psychiatry, Boston University School of Medicine, Boston, MA02118, USA
Mark W. Logue
Affiliation:
National Center for PTSD, VA Boston Healthcare System, Boston, MA02130, USA Department of Psychiatry, Boston University School of Medicine, Boston, MA02118, USA Biomedical Genetics, Boston University School of Medicine, Boston, MA02118, USA Department of Biostatistics, Boston University School of Public Health, Boston, MA02118, USA
Jennifer R. Fonda
Affiliation:
Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA02130, USA Department of Psychiatry, Boston University School of Medicine, Boston, MA02118, USA Department of Psychiatry, Harvard Medical School, Boston, MA02215, USA
Catherine B. Fortier
Affiliation:
Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA02130, USA Department of Psychiatry, Harvard Medical School, Boston, MA02215, USA
Joseph DeGutis
Affiliation:
Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA02130, USA Boston Attention and Learning Laboratory, VA Boston Healthcare System, Boston, MA02130, USA Department of Psychiatry, Harvard Medical School, Boston, MA02215, USA
Regina McGlinchey
Affiliation:
Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA02130, USA Department of Psychiatry, Harvard Medical School, Boston, MA02215, USA
William Milberg
Affiliation:
Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA02130, USA Department of Psychiatry, Harvard Medical School, Boston, MA02215, USA
Michael Esterman
Affiliation:
Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research, Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA02130, USA Boston Attention and Learning Laboratory, VA Boston Healthcare System, Boston, MA02130, USA National Center for PTSD, VA Boston Healthcare System, Boston, MA02130, USA Department of Psychiatry, Boston University School of Medicine, Boston, MA02118, USA
*
*Correspondence and reprint requests to: Thomas Wooten B.S., Department of Psychology, Tufts University, 490 Boston Ave., Medford, MA02155, USA. E-mail: thomas.wooten@tufts.edu

Abstract

Objectives:

Recent studies suggest that close-range blast exposure (CBE), regardless of acute concussive symptoms, may have negative long-term effects on brain health and cognition; however, these effects are highly variable across individuals. One potential genetic risk factor that may impact recovery and explain the heterogeneity of blast injury’s long-term cognitive outcomes is the inheritance of an apolipoprotein (APOE) ε4 allele, a well-known genetic risk factor for Alzheimer’s disease. We hypothesized that APOE ε4 carrier status would moderate the impact of CBE on long-term cognitive outcomes.

Methods:

To test this hypothesis, we examined 488 post-9/11 veterans who completed assessments of neuropsychological functioning, psychiatric diagnoses, history of blast exposure, military and non-military mild traumatic brain injuries (mTBIs), and available APOE genotypes. We separately examined the effects of CBE on attention, memory, and executive functioning in individuals with and without the APOE ε4 allele.

Results:

As predicted, we observed a differential impact of CBE status on cognition as a function of APOE ε4 status, in which CBE ε4 carriers displayed significantly worse neuropsychological performance, specifically in the domain of memory. These results persisted after adjusting for clinical, demographic, and genetic factors and were not observed when examining other neurotrauma variables (i.e., lifetime or military mTBI, distant blast exposure), though these variables displayed similar trends.

Conclusions:

These results suggest APOE ε4 carriers are more vulnerable to the impact of CBE on cognition and highlight the importance of considering genetic risk when studying cognitive effects of neurotrauma.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ariza, M. (2006). Influence of APOE polymorphism on cognitive and behavioural outcome in moderate and severe traumatic brain injury. Journal of Neurology, Neurosurgery & Psychiatry, 77(10), 11911193. doi: 10.1136/jnnp.2005.085167 CrossRefGoogle ScholarPubMed
Baalman, K.L., Cotton, R.J., Rasband, S.N., & Rasband, M.N. (2013). Blast wave exposure impairs memory and decreases axon initial segment length. Journal of Neurotrauma, 30(9), 741751. doi: 10.1089/neu.2012.2478 CrossRefGoogle ScholarPubMed
Belanger, H.G., Kretzmer, T., Yoash-Gantz, R., Pickett, T., & Tupler, L.A. (2009). Cognitive sequelae of blast-related versus other mechanisms of brain trauma. Journal of the International Neuropsychological Society, 15(1), 18. doi: 10.1017/S1355617708090036 CrossRefGoogle ScholarPubMed
Blake, D.D., Weathers, F.W., Nagy, L.M., Kaloupek, D.G., Gusman, F.D., Charney, D.S., & Keane, T.M. (1995). The development of a clinician-administered PTSD scale. Journal of Traumatic Stress, 8(1), 7590. doi: 10.1002/jts.2490080106 CrossRefGoogle ScholarPubMed
Borghesani, P.R., Johnson, L.C., Shelton, A.L., Peskind, E.R., Aylward, E.H., Schellenberg, G.D., & Cherrier, M.M. (2008). Altered medial temporal lobe responses during visuospatial encoding in healthy APOE*4 carriers. Neurobiology of Aging, 29(7), 981991. doi: 10.1016/j.neurobiolaging.2007.01.012 CrossRefGoogle ScholarPubMed
Brown, T.A., Chorpita, B.F., Korotitsch, W., & Barlow, D.H. (1997). Psychometric properties of the depression anxiety stress scales (DASS) in clinical samples. Behaviour Research and Therapy, 35(1), 7989. doi: 10.1016/S0005-7967(96)00068-X CrossRefGoogle Scholar
Burggren, A.C., Zeineh, M.M., Ekstrom, A.D., Braskie, M.N., Thompson, P.M., Small, G.W., & Bookheimer, S.Y. (2008). Reduced cortical thickness in hippocampal subregions among cognitively normal apolipoprotein E e4 carriers. NeuroImage, 41(4), 11771183. doi: 10.1016/j.neuroimage.2008.03.039 CrossRefGoogle ScholarPubMed
Buysse, D.J., Reynolds, C.F., Monk, T.H., Berman, S.R., & Kupfer, D.J. (1989). The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Research, 28(2), 193213. doi: 10.1016/0165-1781(89)90047-4 CrossRefGoogle ScholarPubMed
Carr, W., Stone, J.R., Walilko, T., Young, L.A., Snook, T.L., Paggi, M.E., … Ahlers, S.T. (2016). Repeated low-level blast exposure: A descriptive human subjects study. Military Medicine, 181(5S), 2839. doi: 10.7205/MILMED-D-15-00137 CrossRefGoogle ScholarPubMed
Chamelian, L. (2004). Six-month recovery from mild to moderate traumatic brain injury: The role of APOE- 4 allele. Brain, 127(12), 26212628. doi: 10.1093/brain/awh296 CrossRefGoogle Scholar
Chao, L.L. (2017). Evidence of objective memory impairments in deployed Gulf War veterans with subjective memory complaints. Military Medicine, 182(5), e1625e1631. doi: 10.7205/MILMED-D-16-00309 CrossRefGoogle ScholarPubMed
Chen, C.-Y., Pollack, S., Hunter, D.J., Hirschhorn, J.N., Kraft, P., & Price, A.L. (2013). Improved ancestry inference using weights from external reference panels. Bioinformatics, 29(11), 13991406. doi: 10.1093/bioinformatics/btt144 CrossRefGoogle ScholarPubMed
Clark, A.L., Merritt, V.C., Bigler, E.D., Bangen, K.J., Werhane, M., Sorg, S.F., … Delano-Wood, L. (2018). Blast-exposed veterans with mild traumatic brain injury show greater frontal cortical thinning and poorer executive functioning. Frontiers in Neurology, 9, 873. doi: 10.3389/fneur.2018.00873 CrossRefGoogle ScholarPubMed
Corder, E., Saunders, A., Strittmatter, W., Schmechel, D., Gaskell, P., Small, G., … Pericak-Vance, M. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261(5123), 921923. doi: 10.1126/science.8346443 CrossRefGoogle ScholarPubMed
Crawford, F.C., Vanderploeg, R.D., Freeman, M.J., Singh, S., Waisman, M., Michaels, L., … Mullan, M.J. (2002). APOE genotype influences acquisition and recall following traumatic brain injury. Neurology, 58(7), 11151118. doi: 10.1212/WNL.58.7.1115 CrossRefGoogle ScholarPubMed
De Gasperi, R., Gama Sosa, M.A., Kim, S.H., Steele, J.W., Shaughness, M.C., Maudlin-Jeronimo, E., … Elder, G.A. (2012). Acute blast injury reduces brain Abeta in two rodent species. Frontiers in Neurology, 3, 177. doi: 10.3389/fneur.2012.00177 CrossRefGoogle ScholarPubMed
Delaneau, O., Zagury, J.-F., & Marchini, J. (2013). Improved whole-chromosome phasing for disease and population genetic studies. Nature Methods, 10(1), 56. doi: 10.1038/nmeth.2307 CrossRefGoogle ScholarPubMed
Delis, D.C., Kramer, J., Kaplan, E., & Ober, B. (1999). California verbal learning test—Second Edition (CVLT-II) manual. New York: The Psychological Cooperation.Google Scholar
Delis, D., Kaplan, E., & Kramer, J. (2001). D-KEFS examiner’s and technical manual. San Antonio, TX: Pearson Education.Google Scholar
Elder, G.A., Stone, J.R., & Ahlers, S.T. (2014). Effects of low-level blast exposure on the nervous system: Is there really a controversy? Frontiers in Neurology, 5, 269. doi: 10.3389/fneur.2014.00269 CrossRefGoogle ScholarPubMed
Eramudugolla, R., Bielak, A.A.M., Bunce, D., Easteal, S., Cherbuin, N., & Anstey, K.J. (2014). Long-term cgnitive correlates of traumatic brain injury across adulthood and interactions with APOE genotype, sex, and age cohorts. Journal of the International Neuropsychological Society, 20(4), 444454. doi: 10.1017/S1355617714000174 CrossRefGoogle ScholarPubMed
Farrer, L.A. (1997). Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: A meta-analysis. JAMA, 278(16), 1349. doi: 10.1001/jama.1997.03550160069041 CrossRefGoogle ScholarPubMed
Fortier, C.B., Amick, M.M., Grande, L., McGlynn, S., Kenna, A., Morra, L., … McGlinchey, R.E. (2014). The Boston assessment of traumatic brain injury–lifetime (BAT-L) semistructured interview: Evidence of research utility and validity. Journal of Head Trauma Rehabilitation, 29(1), 8998. doi: 10.1097/HTR.0b013e3182865859 CrossRefGoogle ScholarPubMed
Friedland, D. & Swash, M. (2016). Post-traumatic amnesia and confusional state: Hazards of retrospective assessment. Journal of Neurology, Neurosurgery & Psychiatry, 87(10), 10681074. doi: 10.1136/jnnp-2015-312193 CrossRefGoogle ScholarPubMed
Goldstein, L.E., Fisher, A.M., Tagge, C.A., Zhang, X.-L., Velisek, L., Sullivan, J.A., … McKee, A.C. (2012). Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Science Translational Medicine, 4(134), 134ra60134ra60. doi: 10.1126/scitranslmed.3003716 Google Scholar
Graff-Radford, N.R., Green, R.C., Go, R.C.P., Hutton, M.L., Edeki, T., Bachman, D., … Farrer, L.A. (2002). Association between apolipoprotein E genotype and alzheimer disease in African American subjects. Archives of Neurology, 59(4), 594. doi: 10.1001/archneur.59.4.594 CrossRefGoogle ScholarPubMed
Grande, L.J., Robinson, M.E., Radigan, L.J., Levin, L.K., Fortier, C.B., Milberg, W.P., & McGlinchey, R.E. (2018). Verbal memory deficits in OEF/OIF/OND veterans exposed to blasts at close range. Journal of the International Neuropsychological Society, 24(5), 466475. doi: 10.1017/S1355617717001242 CrossRefGoogle ScholarPubMed
Green, P. (2004). Medical symptom validity test (MSVT) for Microsoft Windows: User’s manual. Edmonton: Paul Green Pub.Google Scholar
Haan, M.N. (1999). The role of APOE 4 in modulating effects of other risk factors for cognitive decline in elderly persons. JAMA, 282(1), 40. doi: 10.1001/jama.282.1.40 CrossRefGoogle Scholar
Han, S.D., Drake, A.I., Cessante, L.M., Jak, A.J., Houston, W.S., Delis, D.C., … Bondi, M.W. (2007). Apolipoprotein E and traumatic brain injury in a military population: Evidence of a neuropsychological compensatory mechanism? Journal of Neurology, Neurosurgery & Psychiatry, 78(10), 11031108. doi: 10.1136/jnnp.2006.108183 CrossRefGoogle Scholar
Hayes, A.F. (2012). PROCESS: A versatile computational tool for observed variable mediation, moderation, and conditional process modeling [White paper]. Retrieved from http://www.afhayes.com/public/process2012.pdf Google Scholar
Hayes, A.F. (2018). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach (2nd ed.). New York: Guilford Press.Google Scholar
Henry, G.K. (2005). Probable malingering and performance on the test of variables of attention. The Clinical Neuropsychologist, 19(1), 121129. doi: 10.1080/13854040490516604 CrossRefGoogle ScholarPubMed
Hetherington, H.P., Hamid, H., Kulas, J., Ling, G., Bandak, F., de Lanerolle, N.C., & Pan, J.W. (2014). MRSI of the medial temporal lobe at 7 T in explosive blast mild traumatic brain injury: 7 T MRSI of mTBI. Magnetic Resonance in Medicine, 71(4), 13581367. doi: 10.1002/mrm.24814 CrossRefGoogle Scholar
Hoge, C.W., McGurk, D., Thomas, J.L., Cox, A.L., Engel, C.C., & Castro, C.A. (2008). Mild traumatic brain injury in U.S. Soldiers returning from Iraq. New England Journal of Medicine, 358(5), 453463. doi: 10.1056/NEJMoa072972 CrossRefGoogle ScholarPubMed
Howie, B.N., Donnelly, P., & Marchini, J. (2009). A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genetics, 5(6), e1000529. doi: 10.1371/journal.pgen.1000529 CrossRefGoogle ScholarPubMed
Jiang, Y., Sun, X., Xia, Y., Tang, W., Cao, Y., & Gu, Y. (2006). Effect of APOE polymorphisms on early responses to traumatic brain injury. Neuroscience Letters, 408(2), 155158. doi: 10.1016/j.neulet.2006.08.082 CrossRefGoogle ScholarPubMed
Johnson, V.E., Stewart, W., & Smith, D.H. (2010). Traumatic brain injury and amyloid-β pathology: A link to Alzheimer’s disease? Nature Reviews Neuroscience, 11(5), 361370. doi: 10.1038/nrn2808 CrossRefGoogle ScholarPubMed
King, L.A., King, D.W., Vogt, D.S., Knight, J., & Samper, R.E. (2006). Deployment risk and resilience inventory: A collection of measures for studying deployment-related experiences of military personnel and veterans. Military Psychology, 18(2), 89120. doi: 10.1207/s15327876mp1802_1 CrossRefGoogle Scholar
Kukolja, J., Thiel, C.M., Eggermann, T., Zerres, K., & Fink, G.R. (2010). Medial temporal lobe dysfunction during encoding and retrieval of episodic memory in non-demented APOE ε4 carriers. Neuroscience, 168(2), 487497. doi: 10.1016/j.neuroscience.2010.03.044 CrossRefGoogle ScholarPubMed
Kuwano, R., Miyashita, A., Koike, A., Jun, G., Wang, L.-S., Takahashi, S., … Farrer, L. (2013). SORL1 is genetically associated with late-onset Alzheimer’s disease in Japanese, Koreans and Caucasians. Alzheimer’s & Dementia, 9(4), P693P694. doi: 10.1016/j.jalz.2013.04.369 CrossRefGoogle Scholar
Lawrence, D.W., Comper, P., Hutchison, M.G., & Sharma, B. (2015). The role of apolipoprotein E episilon (ɛ)-4 allele on outcome following traumatic brain injury: A systematic review. Brain Injury, 29(9), 10181031. doi: 10.3109/02699052.2015.1005131 CrossRefGoogle Scholar
Logue, M.W., Amstadter, A.B., Baker, D.G., Duncan, L., Koenen, K.C., Liberzon, I., … Uddin, M. (2015). The psychiatric genomics consortium posttraumatic stress disorder workgroup: Posttraumatic stress disorder enters the age of large-scale genomic collaboration. Neuropsychopharmacology, 40(10), 22872297. doi: 10.1038/npp.2015.118 CrossRefGoogle ScholarPubMed
Logue, M.W., Baldwin, C., Guffanti, G., Melista, E., Wolf, E.J., Reardon, A.F., … Miller, M.W. (2013). A genome-wide association study of post-traumatic stress disorder identifies the retinoid-related orphan receptor alpha (RORA) gene as a significant risk locus. Molecular Psychiatry, 18(8), 937942. doi: 10.1038/mp.2012.113 CrossRefGoogle ScholarPubMed
Mahley, R.W., & Huang, Y. (1999). Apolipoprotein E: From atherosclerosis to Alzheimerʼs disease and beyond. Current Opinion in Lipidology, 10(3), 207218. doi: 10.1097/00041433-199906000-00003 CrossRefGoogle ScholarPubMed
Management of Concussion/mTBI Working Group. (2009). VA/DoD clinical practice guideline for management of concussion/mild traumatic brain injury. Journal of Rehabilitation Research and Development, 46(6), CP168.CrossRefGoogle Scholar
McGlinchey, R.E., Milberg, W.P., Fonda, J.R., & Fortier, C.B. (2017). A methodology for assessing deployment trauma and its consequences in OEF/OIF/OND veterans: The TRACTS longitudinal prospective cohort study. International Journal of Methods in Psychiatric Research, 26(3), e1556. doi: 10.1002/mpr.1556 CrossRefGoogle ScholarPubMed
Melzack, R. (1987). The short-form McGill pain questionnaire: Pain, 30(2), 191197. doi: 10.1016/0304-3959(87)91074-8 CrossRefGoogle ScholarPubMed
Mendez, M., Owens, E., Reza Berenji, G., Peppers, D.C., Li-Jung, L., & Licht, E. (2013). Mild traumatic brain injury from primary blast vs. blunt forces: Post-concussion consequences and functional neuroimaging. NeuroRehabilitation, 32(2), 397407. doi: 10.3233/NRE-130861 CrossRefGoogle ScholarPubMed
Merritt, V.C., Clark, A.L., Sorg, S.F., Evangelista, N.D., Werhane, M.L., Bondi, M.W., … Delano-Wood, L. (2018). Apolipoprotein E (APOE) ε4 genotype is associated with reduced neuropsychological performance in military veterans with a history of mild traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 40(10), 10501061. doi: 10.1080/13803395.2018.1508555 CrossRefGoogle ScholarPubMed
Merritt, V.C., Lapira, K.M., Clark, A.L., Sorg, S.F., Werhane, M.L., Jak, A.J., … Delano-Wood, L. (2018). APOE-ε4 genotype is associated with elevated post-concussion symptoms in military veterans with a remote history of mild traumatic brain injury. Archives of Clinical Neuropsychology, 34(5):706712. doi: 10.1093/arclin/acy082 CrossRefGoogle Scholar
Miller, M.W., Wolf, E.J., Sadeh, N., Logue, M., Spielberg, J.M., Hayes, J.P., … McGlinchey, R. (2015). A novel locus in the oxidative stress-related gene ALOX12 moderates the association between PTSD and thickness of the prefrontal cortex. Psychoneuroendocrinology, 62, 359365. doi: 10.1016/j.psyneuen.2015.09.003 CrossRefGoogle ScholarPubMed
Nievergelt, C.M., Maihofer, A.X., Klengel, T., Atkinson, E.G., Chen, C.-Y., Choi, K.W., … Koenen, K.C. (2019). International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nature Communications, 10(1), 4558. doi: 10.1038/s41467-019-12576-w CrossRefGoogle ScholarPubMed
Noé, E., Ferri, J., Colomer, C., Moliner, B., & Chirivella, J. (2010). APOE genotype and verbal memory recovery during and after emergence from post-traumatic amnesia. Brain Injury, 24(6), 886892. doi: 10.3109/02699051003724952 CrossRefGoogle ScholarPubMed
Padgett, C.R., Summers, M.J., & Skilbeck, C.E. (2016). Is APOE ε4 associated with poorer cognitive outcome following traumatic brain injury? A meta-analysis. Neuropsychology, 30(7), 775790. doi: 10.1037/neu0000270 CrossRefGoogle ScholarPubMed
Pagulayan, K.F., Rau, H., Madathil, R., Werhane, M., Millard, S.P., Petrie, E.C., … Peskind, E.R. (2018). Retrospective and prospective memory among OEF/OIF/OND veterans with a self-reported history of blast-related mTBI. Journal of the International Neuropsychological Society, 24(4), 324334. doi: 10.1017/S1355617717001217 CrossRefGoogle ScholarPubMed
Preacher, K.J., Rucker, D.D., & Hayes, A.F. (2007). Addressing moderated mediation hypotheses: Theory, methods, and prescriptions. Multivariate Behavioral Research, 42(1), 185227. doi: 10.1080/00273170701341316 CrossRefGoogle ScholarPubMed
Price, A.L., Patterson, N.J., Plenge, R.M., Weinblatt, M.E., Shadick, N.A., & Reich, D. (2006). Principal components analysis corrects for stratification in genome-wide association studies. Nature Genetics, 38(8), 904909. doi: 10.1038/ng1847 CrossRefGoogle ScholarPubMed
Raber, J., Huang, Y., & Ashford, J.W. (2004). ApoE genotype accounts for the vast majority of AD risk and AD pathology. Neurobiology of Aging, 25(5), 641650. doi: 10.1016/j.neurobiolaging.2003.12.023 CrossRefGoogle ScholarPubMed
Reid, M.W., & Velez, C.S. (2015). Discriminating military and civilian traumatic brain injuries. Molecular and Cellular Neuroscience, 66, 123128. doi: 10.1016/j.mcn.2015.03.014 CrossRefGoogle ScholarPubMed
Riley, E., Mitko, A., Stumps, A., Robinson, M., Milberg, W., McGlinchey, R., … DeGutis, J. (2019). Clinically significant cognitive dysfunction in OEF/OIF/OND veterans: Prevalence and clinical associations. Neuropsychology, 33(4), 534546. doi: 10.1037/neu0000529 CrossRefGoogle ScholarPubMed
Roberts, N.A., Burleson, M.H., Burmeister, L.B., Bushnell, M.L., Epstein, D.R., Todd, M., … Goren, K. (2020). Brain boosters: Evaluating a pilot program for memory complaints in veterans. Psychological Services, 17(1), 3345. doi: 10.1037/ser0000279 CrossRefGoogle ScholarPubMed
Robinson, M.E., Lindemer, E.R., Fonda, J.R., Milberg, W.P., McGlinchey, R.E., & Salat, D.H. (2015). Close-range blast exposure is associated with altered functional connectivity in Veterans independent of concussion symptoms at time of exposure: Functional connectivity of close blast. Human Brain Mapping, 36(3), 911922. doi: 10.1002/hbm.22675 CrossRefGoogle ScholarPubMed
Rohling, M.L., Binder, L.M., Demakis, G.J., Larrabee, G.J., Ploetz, D.M., & Langhinrichsen-Rohling, J. (2011). A meta-analysis of neuropsychological outcome after mild traumatic brain injury: Re-analyses and reconsiderations of Binder et al. (1997), Frencham et al. (2005), and Pertab et al. (2009). The Clinical Neuropsychologist, 25(4), 608623. doi: 10.1080/13854046.2011.565076 CrossRefGoogle Scholar
Shadli, R.M., Pieter, M.S., Yaacob, M.J., & Rashid, F.A. (2011). APOE genotype and neuropsychological outcome in mild-to-moderate traumatic brain injury: A pilot study. Brain Injury, 25(6), 596603. doi: 10.3109/02699052.2011.572947 CrossRefGoogle ScholarPubMed
Skinner, H.A. & Sheu, W.J. (1982). Reliability of alcohol use indices. The lifetime drinking history and the MAST. Journal of Studies on Alcohol, 43(11), 11571170. doi: 10.15288/jsa.1982.43.1157 CrossRefGoogle ScholarPubMed
Smith, D.H., Johnson, V.E., & Stewart, W. (2013). Chronic neuropathologies of single and repetitive TBI: Substrates of dementia? Nature Reviews. Neurology, 9(4), 211221. doi: 10.1038/nrneurol.2013.29 CrossRefGoogle ScholarPubMed
Stone, J.R., Okonkwo, D.O., Singleton, R.H., Mutlu, L.K., Helm, G.A., & Povlishock, J.T. (2002). Caspase-3-mediated cleavage of amyloid precursor protein and formation of amyloid β peptide in traumatic axonal injury. Journal of Neurotrauma, 19(5), 601614. doi: 10.1089/089771502753754073 CrossRefGoogle ScholarPubMed
Stulemeijer, M., Vos, P.E., Bleijenberg, G., & van der Werf, S.P. (2007). Cognitive complaints after mild traumatic brain injury: Things are not always what they seem. Journal of Psychosomatic Research, 63(6), 637645. doi: 10.1016/j.jpsychores.2007.06.023 CrossRefGoogle ScholarPubMed
Stuss, D.T., Ely, P., Hugenholtz, H., Richard, M.T., LaRochelle, S., Poirier, C.A., & Bell, I. (1985). Subtle neuropsychological deficits in patients with good recovery after closed head injury: Neurosurgery, 17(1), 4147. doi: 10.1227/00006123-198507000-00007 CrossRefGoogle ScholarPubMed
Sullivan, D.R., Logue, M.W., Wolfe, E.J., Hayes, J.P., Salat, D.H., Fortier, C.B., … Miller, M.W. (2019). Close-range blast exposure is associated with altered white matter integrity in APOE ε4 carriers. Journal of Neurotrauma, 36(23), 3264-3273.CrossRefGoogle Scholar
Taber, K.H., Hurley, R.A., Haswell, C.C., Rowland, J.A., Hurt, S.D., Lamar, C.D., & Morey, R.A. (2015). White matter compromise in veterans exposed to primary blast forces: Journal of Head Trauma Rehabilitation, 30(1), E15E25. doi: 10.1097/HTR.0000000000000030 CrossRefGoogle ScholarPubMed
Talavage, T.M., Nauman, E.A., Breedlove, E.L., Yoruk, U., Dye, A.E., Morigaki, K.E., … Leverenz, L.J. (2014). Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion. Journal of Neurotrauma, 31(4), 327338. doi: 10.1089/neu.2010.1512 CrossRefGoogle ScholarPubMed
Teasdale, G.M., Nicoll, J.A., Murray, G., & Fiddes, M. (1997). Association of apolipoprotein E polymorphism with outcome after head injury. The Lancet, 350(9084), 10691071. doi: 10.1016/S0140-6736(97)04318-3 CrossRefGoogle ScholarPubMed
The 1000 Genomes Project Consortium. (2015). A global reference for human genetic variation. Nature, 526(7571), 6874. doi: 10.1038/nature15393 CrossRefGoogle Scholar
Trotter, B.B., Robinson, M.E., Milberg, W.P., McGlinchey, R.E., & Salat, D.H. (2015). Military blast exposure, ageing and white matter integrity. Brain, 138(8), 22782292. doi: 10.1093/brain/awv139 CrossRefGoogle ScholarPubMed
Twamley, E.W., Jak, A.J., Delis, D.C., Bondi, M.W., & Lohr, J.B. (2014). Cognitive symptom management and rehabilitation therapy (CogSMART) for veterans with traumatic brain injury: Pilot randomized controlled trial. Journal of Rehabilitation Research and Development, 51(1), 5970. doi: 10.1682/JRRD.2013.01.0020 CrossRefGoogle ScholarPubMed
Vanderploeg, R.D., Belanger, H.G., Horner, R.D., Spehar, A.M., Powell-Cope, G., Luther, S.L., & Scott, S.G. (2012). Health outcomes associated with military deployment: mild traumatic brain injury, blast, trauma, and combat associations in the Florida National Guard. Archives of Physical Medicine and Rehabilitation, 93(11), 18871895. doi: 10.1016/j.apmr.2012.05.024 CrossRefGoogle ScholarPubMed
Weschler, D. (2008). Wechsler Adult Intelligence Scale (4th ed., WAIS-IV). San Antonio, TX: Pearson.Google Scholar
Wishart, H.A., Saykin, A.J., McAllister, T.W., Rabin, L.A., McDonald, B.C., Flashman, L.A., … Rhodes, C.H. (2006). Regional brain atrophy in cognitively intact adults with a single APOE 4 allele. Neurology, 67(7), 12211224. doi: 10.1212/01.wnl.0000238079.00472.3a CrossRefGoogle Scholar
Yue, J.K., Robinson, C.K., Burke, J.F., Winkler, E.A., Deng, H., Cnossen, M.C., … the TRACK-TBI Investigators. (2017). Apolipoprotein E epsilon 4 (APOE- ε 4) genotype is associated with decreased 6-month verbal memory performance after mild traumatic brain injury. Brain and Behavior, 7(9), e00791. doi: 10.1002/brb3.791 CrossRefGoogle ScholarPubMed
Zhou, W., Xu, D., Peng, X., Zhang, Q., Jia, J., & Crutcher, K.A. (2008). Meta-analysis of APOE 4 allele and outcome after traumatic brain injury. Journal of Neurotrauma, 25(4), 279290. doi: 10.1089/neu.2007.0489 CrossRefGoogle ScholarPubMed
Supplementary material: File

Wooten et al. supplementary material

Wooten et al. supplementary material

Download Wooten et al. supplementary material(File)
File 151.2 KB