Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-18T19:08:09.864Z Has data issue: false hasContentIssue false

Dissociations between Spatial and Temporal Order Memory: A Neuropsychological Patient Study

Published online by Cambridge University Press:  08 May 2017

Neeltje Kant*
Affiliation:
Experimental Psychology, Helmholtz Institute, Utrecht University, Langeveld Building, Utrecht, The Netherlands Nieuw Unicum, Zandvoort, The Netherlands
Martine J.E. van Zandvoort
Affiliation:
Experimental Psychology, Helmholtz Institute, Utrecht University, Langeveld Building, Utrecht, The Netherlands Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
Esther van den Berg
Affiliation:
Department of Neurology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
Catharina J.M. Frijns
Affiliation:
Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
L. Jaap Kappelle
Affiliation:
Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
Albert Postma
Affiliation:
Experimental Psychology, Helmholtz Institute, Utrecht University, Langeveld Building, Utrecht, The Netherlands Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Center Utrecht, Utrecht, The Netherlands
*
Correspondence and reprint requests to: Neeltje Kant, Heidelberglaan 1, NL-3584 CS Utrecht, The Netherlands. E-mail: n.kant@uu.nl

Abstract

Objectives: In complex real life situations, memories for temporal and spatial information are naturally linked since sequential events coincide in time and space. Whether this connection is inseparable or instead whether these processes are functionally dissociable was investigated in this patient study. Methods: Spatial object-location and temporal order memory tasks were administered to 36 stroke patients and 44 healthy control participants. Results: On group level, patients with a stroke in the left hemisphere performed worse on temporal order memory, compared to the control participants. On individual level, using a multiple case-study approach, a clear pattern of dissociations was found between memory for temporal and for spatial features. Conclusions: These findings indicate that location and temporal order memory contain functionally separable processes. This adds to our understanding of how context information is processed in human memory. (JINS, 2017, 23, 421–430)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Annett, M. (2004). Hand preference observed in large healthy samples: Classification, norms and interpretations of increased non-right-handedness by the right shift theory. British Journal of Psychology, 95, 339353.Google Scholar
Arthur, W., & Day, D.V. (1994). Development of a short form for the Raven Advanced Progressive Matrices Test. Educational and Psychological Measurement, (54), 394403.CrossRefGoogle Scholar
Baddeley, A. (2000). The episodic buffer: A new component of working memory? Trends in Cognitive Sciences, 4, 417423.Google Scholar
Constantinidis, C., & Wang, X.J. (2004). A neural circuit basis for spatial working memory. Neuroscientist, 10, 553565.Google Scholar
Crawford, J.R., & Garthwaite, P.H. (2002). Investigation of the single case in neuropsychology: Confidence limits on the abnormality of test scores and test score differences. Neuropsychologia, 40, 11961208.Google Scholar
Crawford, J.R., Garthwaite, P.H., & Ryan, K. (2011). Comparing a single case to a control sample: Testing for neuropsychological deficits and dissociations in the presence of covariates. Cortex, 47, 11661178.Google Scholar
Crawford, J.R., & Howell, D.C. (1998). Comparing an individual’s test score against norms derived from small samples. The Clinical Neuropsychologist, 12, 482486.CrossRefGoogle Scholar
Crawford, J.R., Howell, D.C., & Garthwaite, P.H. (1998). Payne and Jones revisited: Estimating the abnormality of test score differences using a modified paired samples t test. Journal of Clinical and Experimental Neuropsychology, 20, 898905.Google Scholar
Dent, K., & Smyth, M.M. (2005). Verbal coding and the storage of form-position associations in visual–spatial short-term memory. Acta Psychologica, 120(2), 113140.Google Scholar
Duvernoy, H.M. (1999). The human brain. Surface, blood supply and three dimensional sectional anatomy (2nd ed.). New York: Springer Wien.Google Scholar
Feigenbaum, J.D., Polkey, C.E., & Morris, R.G. (1996). Deficits in spatial working memory after unilateral temporal lobectomy in man. Neuropsychologia, 34, 163176.Google Scholar
Friedman, H.R., & Goldman-Rakic, P.S. (1994). Coactivation of prefrontal cortex and inferior parietal cortex in working memory tasks revealed by 2DG functional mapping in the rhesus monkey. The Journal of Neuroscience, 14, 27752788.Google Scholar
Glabus, M.F., Horwitz, B., Holt, J.L., Kohn, P.D., Gerton, B.K., Callicott, J.H., & Berman, K.F. (2003). Interindividual differences in functional interactions among prefrontal, parietal and parahippocampal regions during working memory. Cerebral Cortex, 13(12), 13521361.Google Scholar
Healy, A.F., Cunningham, T.F., Gesi, A.T., Till, R.E., & Bourne, L.E. Jr. (1991). Comparing short-term recall of item, temporal, and spatial information in children and adults. In W.E. Hockley & S. Lewandowsky (Eds.), Relating theory and data: Essays on human memory in honor of Bennet B. Murdock (pp. 127154). Hillsdale, NJ: Erlbaum.Google Scholar
Hirose, S., Kimura, H.M., Jimura, K., Kunimatsu, A., Abe, O., Ohtomo, K., & Konishi, S. (2013). Dissociable temporo-parietal memory networks revealed by functional connectivity during episodic retrieval. PLoS One, 8(8), e71210.Google Scholar
Howard, M.W., & Eichenbaum, H. (2015). Time and space in the hippocampus. Brain Research, 1621, 345354.Google Scholar
Inoue, M., Mikami, A., Ando, I., & Tsukada, H. (2004). Functional brain mapping of the macaque related to spatial working memory as revealed by PET. Cerebral Cortex, 14, 106119.Google Scholar
Jacques, P.S., Rubin, D.C., LaBar, K.S., & Cabeza, R. (2008). The short and long of it: Neural correlates of temporal-order memory for autobiographical events. Journal of Cognitive Neuroscience, 20(7), 13271341.Google Scholar
Kessels, R.P., Hobbel, D., & Postma, A. (2007). Aging, context memory and binding: A comparison of “what, where and when” in young and older adults. International Journal of Neuroscience, 117(6), 795810.Google Scholar
Kessels, R.P., Kappelle, L.J., de Haan, E.H., & Postma, A. (2002). Lateralization of spatial-memory processes: Evidence on spatial span, maze learning, and memory for object locations. Neuropsychologia, 40(8), 14651473.Google Scholar
Kessels, R.P., & Kopelman, M.D. (2012). Context memory in Korsakoff’s syndrome. Neuropsychology Review, 22(2), 117131.Google Scholar
Kessels, R.P., Postma, A., & de Haan, E.H. (1999). Object Relocation: A program for setting up, running, and analyzing experiments on memory for object locations. Behavior Research Methods, Instruments, & Computers, 31, 423428.Google Scholar
Kessels, R.P., Postma, A., Wijnalda, E.M., & de Haan, E.H. (2000). Frontal-lobe involvement in spatial memory: Evidence from PET, fMRI, and lesion studies. Neuropsychology Review, 10, 101113.Google Scholar
Kessels, R.P., van Zandvoort, M.J., Postma, A., Kappelle, L.J., & de Haan, E.H. (2000). The Corsi Block-Tapping Task: Standardization and normative data. Applied Neuropsychology, 7, 252258.Google Scholar
Logie, R.H., Brockmole, J.R., & Jaswal, S. (2011). Feature binding in visual short-term memory is unaffected by task-irrelevant changes of location, shape, and color. Memory & Cognition, 39(1), 2436.Google Scholar
Mahoney, F.I., & Barthel, D. (1965). Functional evaluation: The Barthel Index. Maryland State Medical Journal, 14, 5661.Google Scholar
Miotto, E.C., Bullock, P., Polkey, C.E., & Morris, R.G. (1996). Spatial working memory and strategy formation in patients with frontal lobe excisions. Cortex, 32, 613630.Google Scholar
Nelson, C.A., Monk, C.S., Lin, J., Carver, L.J., Thomas, K.M., & Truwit, C.L. (2000). Functional neuroanatomy of spatial working memory in children. Developmental Psychology, 36, 109116.Google Scholar
Nicholls, M.E. (1996). Temporal processing asymmetries between the cerebral hemispheres: Evidence and implications. Laterality, 1(2), 97138.Google Scholar
Postma, A., Van Asselen, M., Keuper, O., Wester, A.J., & Kessels, R.P. (2006). Spatial and temporal order memory in Korsakoff patients. Journal of the International Neuropsychological Society, 12, 327336.Google Scholar
Reitan, R.M., & Wolfson, D. (1992). Conventional intelligence measurements and neuropsychological concepts of adaptive abilities. Journal of Clinical Psychology, 48, 521529.Google Scholar
Saan, R.J., & Deelman, B.G. (1986). De nieuwe 15-woordentest (A en B) een handleiding. (New 15-words test (A and B) a manual). Lisse, Netherlands: Swets & Zeitlinger.Google Scholar
Schmand, B., Bakker, D., Saan, R., & Louman, J. (1991). [The Dutch Reading Test for Adults: A measure of premorbid intelligence level]. Tijdschrift voor gerontologie en geriatrie, 22, 1519.Google Scholar
Schoo, L.A., Van Zandvoort, M.J., Reijmer, Y.D., Biessels, G.J., Kappelle, L.J., & Postma, A. (2014). Absolute and relative temporal order memory for performed activities following stroke. Journal of Clinical and Experimental Neuropsychology, 36(6), 648658.Google Scholar
Van Asselen, M., Van der Lubbe, R.H., & Postma, A. (2006). Are space and time automatically integrated in episodic memory? Memory, 14, 232240.Google Scholar
Van Asselen, M., Kessels, R.P., Kappelle, L.J., Neggers, S.F., Frijns, C.J., & Postma, A. (2006). Neural correlates of human wayfinding in stroke patients. Brain Research, 1067(1), 229238.Google Scholar
Van Asselen, M., Kessels, R.P., Kappelle, L.J., & Postma, A. (2008). Categorical and coordinate spatial representations within object-location memory. Cortex, 44(3), 249256.Google Scholar
Van der Ham, I.J., Van Wezel, R.J., Oleksiak, A., van Zandvoort, M.J., Frijns, C.J., Kappelle, L.J., & Postma, A. (2012). The effect of stimulus features on working memory of categorical and coordinate spatial relations in patients with unilateral brain damage. Cortex, 48(6), 737745.Google Scholar
Van der Ham, I.J., van Zandvoort, M.J., Meilinger, T., Bosch, S.E., Kant, N., & Postma, A. (2010). Spatial and temporal aspects of navigation in two neurological patients. Neuroreport, 21(10), 685689.Google Scholar
Van Geldorp, B., Kessels, R.P., & Hendriks, M.P. (2013). Single-item and associative working memory in stroke patients. Behavioural Neurology, 26(3), 199201.Google Scholar
Verhage, F., & Van Der Werff, J.J. (1963). [An analysis of variance based on the Groninger Intelligence Test Scores.]. Nederlands tijdschrift voor de psychologie en haar grensgebieden, 19, 497509.Google Scholar
Wechsler, D. (1997). Manual for the Wechsler Adult Intelligence Scale-III. San Antonio, TX: The Psychological Corporation.Google Scholar
Wilson, M.E. (2013). Stroke: Understanding the differences between males and females. Pflugers Archiv, 465(5), 595600.Google Scholar
Zhang, D., Zhang, X., Sun, X., Li, Z., Wang, Z., He, S., & Hu, X. (2004). Cross‐modal temporal order memory for auditory digits and visual locations: An fMRI study. Human Brain Mapping, 22(4), 280289.Google Scholar
Supplementary material: File

Kant supplementary material

Figure A and Table A

Download Kant supplementary material(File)
File 28.3 KB