Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-02T12:56:46.844Z Has data issue: false hasContentIssue false

Feeding habits of the sharpnose shark Rhizoprionodon longurio on the west coast of the Gulf of California, Mexico

Published online by Cambridge University Press:  07 September 2023

Amairani Hernández-Aparicio
Affiliation:
Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas (CICIMAR-IPN), Av. IPN s/n, Col Playa Palo de Santa Rita, C.P. 23096, La Paz, Baja California Sur, Mexico
Felipe Galván-Magaña*
Affiliation:
Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas (CICIMAR-IPN), Av. IPN s/n, Col Playa Palo de Santa Rita, C.P. 23096, La Paz, Baja California Sur, Mexico
María Del Rosario Simental-Anguiano
Affiliation:
Instituto Politécnico Nacional, Centro Interdisciplinario de Ciencias Marinas (CICIMAR-IPN), Av. IPN s/n, Col Playa Palo de Santa Rita, C.P. 23096, La Paz, Baja California Sur, Mexico
*
Corresponding author: Felipe Galván-Magaña; Email: galvan.felipe@gmail.com

Abstract

The sharpnose shark (Rhizoprionodon longurio) is among the top three shark species captured by artisanal fisheries of the Gulf of California. This study includes information regarding the feeding habits of this species using the stomach contents of 70 individuals ranged from 54 to 109 cm in total length (TL). Out of the 16 prey items identified, fish of the families Scombridae (Scomber japonicus; prey-specific relative importance index [%PSIRI] = 6.3) and Batrachoididae (%PSIRI = 5.5), the cephalopod Lolliguncula spp. (%PSIRI = 6.3), and the crustacean Pleuroncodes planipes (%PSIRI = 4.3) were the most important prey. Only female stomachs were obtained (N = 19) in the central area of the gulf, and the PSIRI indicated that the preferred prey were the cephalopod Lolliguncula spp. (%PSIRI = 10.5) and fish of the Sparidae family (Calamus brachysomus; %PSIRI = 5.8). The number of stomachs was not sufficient to analyse differences by sex. Regarding its trophic position, R. longurio was a tertiary consumer (TLK = 4.4). A TLK = 4.4 was calculated for the central area, and a TLK = 4.3 for the southern area. According to Levin's index (Bi), this shark is a specialist predator in the whole study area (Bi = 0.19), including the centre (Bi = 0.29). Conversely, it was considered a generalist predator in the southern area (Bi = 0.63). The high quantity of empty stomachs could relate to the time the sharks were caught in fishing a gear.

Type
Research Article
Copyright
Copyright © Instituto Politecnico Nacional, 2023. Published by Cambridge University Press on behalf of Marine Biological Association of the United Kingdom

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acosta-Alonso, AL (2021) Cambios ontogénicos en la dieta del cazón bironche Rhizoprionodon longurio en la Bahía de La Paz, B.C.S,, México. MSc thesis. Centro Interdisciplinario de Ciencias Marinas. Instituto Politécnico Nacional, La Paz, Mexico.Google Scholar
Alatorre-Ramírez, VG, Galván-Magaña, F and Torres-Rojas, YE (2013) Trophic habitat of the Pacific sharpnose shark, Rhizoprionodon longurio, in the Mexican Pacific. Journal of the Marine Biological Association of the United Kingdom 93, 22172224.CrossRefGoogle Scholar
Alderete-Macal, M (2007) Hábitos alimenticios del tiburón horma Rhizoprionodon longurio (Jordan y Gilbert, 1882) en Salina Cruz, Oaxaca. BSc thesis. Universidad Autónoma de Baja California Sur, La Paz, Mexico.Google Scholar
Brown, SC, Bizzarro, JJ, Caillie, TGM and Ebert, DA (2012) Breaking with tradition: redefining measures for diet description with a case study of the Aleutian skate Bathyraja aleutica (Gilbert 1896). Environmental Biology of Fishes 95, 320.CrossRefGoogle Scholar
Cabrera-Chávez, AA (2003) Hábitos alimenticios del tiburón piloto Carcharhinus falciformis (Bibron, 1839) en la costa occidental de Baja California Sur. MSc thesis. Centro Interdisciplinario de Ciencias Marinas. Instituto Politécnico Nacional, La Paz, México.Google Scholar
Cailliet, G (1996) Sample size and data analysis: are we characterizing and comparing diet properly? GUTSHOP'96. Feeding Ecology and Nutrition in Fish Symposium Proceedings, 71–80.Google Scholar
Castillo-Géniz, JL (1990) Contribución al conocimiento de la biología y pesquería del cazón bironche, Rhizoprionodon longurio (Jordan y Gilbert, 1882) (Elasmobranchii, Carcharhinidae), del sur de Sinaloa, Mexico. BSc thesis. Universidad Autónoma de Mexico, Mexico City, Mexico.Google Scholar
Chao, A, Gotelli, NJ, Hsieh, TC, Sander, EL, Ma, KH, Colwell, RK and Ellison, MA (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84, 4567.CrossRefGoogle Scholar
Christensen, V and Pauly, D (1992) Ecopath II – a software for balancing steady-state ecosystem models and calculating network characteristics. Ecological Modelling 61, 169185.CrossRefGoogle Scholar
Clarke, MR (1962) The identification of cephalopod “beaks” and their relationship between beak size and total body weight. Bulletin of the British Museum (Natural History) Zoology 8, 422480.Google Scholar
Clarke, M (1986) A Handbook for the Identification of Cephalopod Beaks. New York, NY: Oxford University Press.Google Scholar
Clarke, KR (1993) Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18, 117143.CrossRefGoogle Scholar
Clarke, KR and Gorley, RN (2006) User manual/tutorial. PRIMER-E, Plymouth, 6: 192.Google Scholar
Clarke, KR and Warwick, RM (1994) Change in marine communities: an approach to statistical analysis and interpretation, UK: Natural Environment Research Council, 144.Google Scholar
CONAPESCA: Comisión Nacional de Acuacultura y Pesca (2015) Anuario Estadı́stico De Acuacultura y Pesca. Mazatlán, Sinaloa, México. 299 pp.Google Scholar
Conde-Moreno, M (2009) Ecología trófica del tiburón bironche, Rhizoprionodon longurio (Jordan & Gilbert, 1882), en dos áreas del Pacífico Mexicano. MSc thesis. Centro Interdisciplinario de Ciencias Marinas. Instituto Politécnico Nacional, La Paz, Mexico.Google Scholar
Cortés, E (1997) A critical review of methods of studying fish feeding based on analysis of stomach contents: application to elasmobranch fishes. Canadian Journal of Fisheries and Aquatic Sciences 54, 726738.CrossRefGoogle Scholar
Cortés, E (1999) Standardized diet composition and trophic level in sharks. ICES Journal of Marine Sciences 56, 707717.CrossRefGoogle Scholar
Díaz-Murillo, BP (2006) Catálogo de otolitos de peces marinos de las costas adyacentes a Baja California Sur. BSc thesis. Universidad Autónoma de Baja California Sur, La Paz, Mexico.Google Scholar
Fischer, W (1995) Guía FAO para la identificación de especies para los fines de la pesca. Pacífico centro-oriental. Plantas e Invertebrados 646; Vertebrados, Parte 1 & 2, 647–1813.Google Scholar
Flores-Martínez, IA (2017) Ecología trófica de los cazones Rhizoprionodon terraenovae (Richardson, 1836) y Sphyrna tiburo (Linnaeus, 1758) capturados en el litoral de Campeche, México. MSc thesis. Centro Interdisciplinario de Ciencias Marinas. Instituto Politécnico Nacional, La Paz, Mexico.Google Scholar
Flores-Martínez, IA, Torres-Rojas, YE, Galván-Magaña, F and Ramos-Miranda, J (2017) Diet comparison between silky sharks (Carcharhinus falciformis) and scalloped hammerhead sharks (Sphyrna lewini) off the south-west coast of Mexico. Journal of the Marine Biological Association of the United Kingdom 97, 337345.CrossRefGoogle Scholar
Galván-Magaña, F (1999) Relaciones tróficas interespecíficas de la comunidad de depredadores epipelágicos del Océano Pacífico Oriental. PhD thesis. Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Mexico.Google Scholar
Galván-Magaña, F, Nienhuis, HJ and Klimley, AP (1989) Seasonal abundance and feeding habits of sharks of the lower Gulf of California, Mexico. California Fish and Game 75, 7484.Google Scholar
Hansson, S, Hobbie, JE, Elmgren, R, Larsson, U, Fry, B and Johansson, S (1997) The stable nitrogen isotope ratio as a marker of food–web interactions and fish migration. Ecology 78, 22492257.CrossRefGoogle Scholar
Hsieh, TC, Ma, HK and Chao, A (2016) A quick introduction to iNEXT via examples. Available at http://chao.stat.nthu.edu.tw/blog/software-download/ (accessed 2/28/2017).Google Scholar
Hyslop, E (1980) Stomach contents analysis a review of methods and their application. Journal of Fish Biology 17, 411424.CrossRefGoogle Scholar
Krebs, CJ (1989) Niche Ovrlaps and Diet Analysis Ecological Methodology. Harper and Row: New York, NY.Google Scholar
Langler, KF (1956) Freshwater fishery biology, Dubuque, Iowa: Wm. C. Brown. 421.Google Scholar
Lowry, MS (2011) Photographic catalog of California marine fish otoliths: prey of California sea lions (Zalophus californianus). NOAA Technical Memorandum NMFS. U.S. Department of Commerce, La Jolla.Google Scholar
Márquez-Farías, JF, Corro-Espinosa, D and Castillo-Géniz, JL (2005) Observations on the biology of the Pacific sharpnose shark (Rhizoprionodon longurio, Jordan and Gilbert 1882), captured in southern Sinaloa, Mexico. Journal of Northwest Atlantic Fishery Science 35, 107-114.CrossRefGoogle Scholar
Mejía Salazar, LA (2007) Biología reproductiva del cazón bironche, Rhizoprionodon longurio (Jordan & Gilbert, 1882) en el Pacífico Mexicano. MSc thesis. Centro Interdisciplinario de Ciencias Marinas. Instituto Politécnico Nacional, La Paz, Mexico.Google Scholar
Osuna-Peralta, YR, Voltolina, D, Morán-Ángulo, RE and Márquez-Farías, JF (2014) Stomach contents of the Pacific sharpnose shark, Rhizoprionodon longurio (Carcharhiniformes, Carcharhinidae) in the southeastern Gulf of California. Latin American Journal of Aquatic Research 42, 438444.CrossRefGoogle Scholar
Pinkas, L, Oliphant, MS and Iverson, ILK (1971) Food habits of albacore, bluefin tuna and bonito in California waters. California Fish and Game, Fish Bulletin 152, 1-139.Google Scholar
Polo-Silva, CJ (2008) Ecología trófica de los tiburones zorro Alopias pelagicus Nakamura, 1935 y Alopias superciliosus Lowe, 1839 en el Pacifico ecuatoriano. PhD thesis. Centro Interdisciplinario de Ciencias Marinas. Instituto Politécnico Nacional, La Paz, Mexico.Google Scholar
SAGARPA-CONAPESCA-Gobierno del Estado BCS-Secretaría de Pesca BCS-CIBNOR-CICIMAR (2007) Propuesta de Carta Estatal Pesquera y Acuícola del Estado de Baja California Sur. Centro de Investigaciones Biológicas del Noroeste S.C. 282 pp.Google Scholar
Salomón-Aguilar, CA, Villavicencio-Garayzar, CJ and Reyes-Bonilla, H (2009) Zonas y temporadas de reproducción y crianza de tiburones en el Golfo de California: Estrategia para su conservación y manejo pesquero. Ciencias Marinas 35, 369388.CrossRefGoogle Scholar
Serrano, B and Soraya, E (2016) Análisis de la dieta de la curvina golfina Cynoscion othonopterus (Jordán y Gilbert, 1882) en el Alto Golfo de California. MSc thesis. Centro Interdisciplinario de Ciencias Marinas. Instituto Politécnico Nacional, La Paz, Mexico.Google Scholar
Torres-Rojas, YE (2011) Nicho trófico de pelágicos mayores capturados en la boca del Golfo de California. PhD thesis. Centro Interdisciplinario de Ciencias Marinas. Instituto Politécnico Nacional, La Paz, Mexico.Google Scholar
Trejo-Ramírez, A (2017) Caracterización de la Bahía de la Paz, Baja California Sur, Mexico, como una posible área de crianza del tiburón bironche, Rhizoprionodon longurio (Jordan & Gilbert, 1882). MSc thesis. Centro Interdisciplinario de Ciencias Marinas. Instituto Politécnico Nacional, La Paz, Mexico.Google Scholar
Viana-Morayta, JE, Torres-Rojas, YE and Camalich-Carpizo, J (2020) Diet shifts of Rhizoprionodon terraenovae from the southern Gulf of Mexico: possible scenario by temperature changes. Latin American Journal of Aquatic Research 48, 406420.CrossRefGoogle Scholar
Wolff, (1982) A beak key for eight eastern tropical Pacific cephalopods species, with relationship between their beak dimension and size. Fishery Bulletin 80, 357370.Google Scholar
Wolff, GA (1984) Identification and estimation of size from beaks of eighteen species of cephalopods from the Pacific Ocean. NOAA Technical Report NMFS, USA, no. 17, 50 pp.Google Scholar