Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-06-03T23:43:52.528Z Has data issue: false hasContentIssue false

Zonal Orientation and Spectral Filtering in Talitrus Saltator (Amphipoda, Talitridae)

Published online by Cambridge University Press:  11 May 2009

A. Ugolini
Affiliation:
Dipartimento di Biologia Animale e Genetica, Università di Firenze, Via Romana 17, 1–50125 Firenze, Italy.
B. Vignali
Affiliation:
Dipartimento di Biologia Animale e Genetica, Università di Firenze, Via Romana 17, 1–50125 Firenze, Italy.
C. Castellini
Affiliation:
Istituto Nazionale di Ottica, Largo E. Fermi 9, 1–50125 Firenze, Italy.
M. Lindström
Affiliation:
Tvärminne Zoological Station, University of Helsinki, SF–10900 Hanko, Finland

Extract

Adult individuals of Talitrus saltator were tested for celestial orientation in a plexiglass bowl covered with colour filters of different wavelengths. Results show that T. saltator can recognize the sun and use it for orientation only at γ <450 nm. At γ >500 nm, the sight of the sun (and sky) only induces phototactic behaviour. It has also been confirmed that an important celestial orienting factor is perceived in the UV range. Variations in populations from diversely oriented coastlines are discussed. Preliminary results of electroretino-graphic responses indicate the presence of at least two visual pigments in the eye and a steep decrease in sensitivity for γ >500 nm.

Type
Research Article
Copyright
Copyright © Marine Biological Association of the United Kingdom 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batschelet, E., 1981. Circular statistic in biology. London: Academic Press.Google Scholar
Brines, M.L. & Gould, J.L., 1982. Skylight polarization patterns and animal orientation. Journal of Experimental Biology, 96, 6991.Google Scholar
Dormer, K.O., 1971. On vision in Pontoporeia affinis and P. femorata (Crustacea: Amphipoda). Commentationes Biologicae. Societas Scientiarum Fennica, 41, 117.Google Scholar
Duelli, P. & Wehner, R., 1973. The spectral sensitivity of polarized light orientation in Cataglyphis bicolor (Formicidae, Hymenoptera). Journal of Comparative Physiology, 86, 3753.Google Scholar
Ercolini, A., 1963. Ricerche sull'orientamento solare degli Anfipodi. La variazione dell'orientamento in cattività. Archivio Zoologico Italiano, 48, 147179.Google Scholar
Ercolini, A., 1964. Sulla struttura degli occhi composti di Talitrus saltator Montagu (Crustacea: Amphipoda). Redia, 49, 129135.Google Scholar
Ercolini, A., Giulio, L. & Messina, F., 1967. Initial phases of electroretinogram in the eyes of some Arthropods under high intensity white light stimuli. Monitore Zoologico Italiano (Nuova Serie), 1, 6571.Google Scholar
Ercolini, A. & Scapini, F., 1976. Sensitivity and response to light in the laboratory of littoral amphipod Talitrus saltator Montagu. Monitore Zoologico Italiano (Nuova Serie), 10, 293309.Google Scholar
Frisch, K. von, 1967. The dance language and orientation of bees. Cambridge: Belknap Press, Harvard University Press.Google Scholar
Goldsmith, T.H., 1972. The natural history of invertebrate visual pigments. In Handbook of sensory physiology, vol. VII/1 (ed. H.J.A., Dartnall), pp. 685719. Berlin: Springer Verlag.Google Scholar
Hariyama, T., Meyer-Rochow, V.B. & Eguchi, E., 1986. Diurnal changes in structure and function of the compound eye of Ligia exotica (Crustacea, Isopoda). Journal of Experimental Biology, 123, 126.CrossRefGoogle Scholar
Hariyama, T., Tsukahara, Y. & Meyer-Rochow, V.B., 1993. Spectral responses, including a UV-sensitive cell type, in the eye of the isopod Ligia exotica. Naturwissenschaften. Berlin, 80, 233235.CrossRefGoogle Scholar
Laffort, B., 1992. Orientation spaziale et lumiere polarisée chez Talitrus saltator (Crustacea, Amphipoda). Thése du Doctorat de l'Universitè Paul Sabatier de Toulouse. [Sciences du Comportament et Neurosciences Cognitives, 3–168.]Google Scholar
Lindström, M., Fortelius, W. & Meyer-Rochow, V.B., 1991. Exposure to bright light has little effect on eye sensitivity and ultrastructure of Saduria entomon (Crustacea: Isopoda: Valvifera). Zoological Science, 8, 653663.Google Scholar
Lindström, M. & Nilsson, H.L., 1983. Spectral and visual sensitivities of Cirolana borealis Lilljeborg, a deep-water isopod (Crustacea: Flabellifera). Journal of Experimental Marine Biology and Ecology, 69, 243256.CrossRefGoogle Scholar
Mezzetti, M.C., 1993. Adattamenti fisiologici della visione nei talitridi (Crustacea: Amphipoda) una interpretazione Ecologica. Dottorato di Ricerca in Biologia Animale (Etologia) Università di Firenze.Google Scholar
Pardi, L., 1957–1958. Esperienze sull'orientamento solare di Phaleria provincialis Fauv. (Coleopt.): il comportamento a luce artificiale durante l'intero ciclo di 24 ore. Atti dell'Accademia delle Scienze. Torino, 92, 18.Google Scholar
Pardi, L. & Ercolini, A., 1986. Zonal recovery mechanisms in Talitrid crustaceans. Bollettino di Zoologia, 53, 139160.Google Scholar
Pardi, L. & Papi, F., 1953. Ricerche sull'orientamento di Talitrus saltator (Montagu) (Crustacea–Amphipoda). I. L'orientamento durante il giorno in una popolazione del litorale tirrenico. Zeitschrift für Vergleichende Physiologie, 35, 459–189.CrossRefGoogle Scholar
Rossel, S. & Wehner, R., 1984. Celestial orientation in bees: the use of spectral cues. Journal of Comparative Physiology, 155A, 605613.Google Scholar
Seliger, H.H., Lall, A.B. & Biggley, W.H., 1994. Blue through UV polarization sensitivities in insects. Optimizations for the range of atmospheric polarization conditions. Journal of Comparative Physiology, 175A, 475–186.Google Scholar
Shaw, S.R. & Stowe, S., 1982. Photoreception. In Biology of Crustacea, vol. 3 (ed. H.L., Atwood and D.C., Sandeman), pp. 291367. New York: Academic Press.CrossRefGoogle Scholar
Terracini Debenedetti, E., 1958–1962. Orientational response of some Amphipods under artificial light. Bollettino dell'Istituto e Museo di Zoologico della Università di Torino, 6, (N.2), 2128.Google Scholar
Ugolini, A., 1989. Orientation in the water and antipredatory behaviour in sandhoppers. Marine Behaviour and Physiology, 14, 223230.CrossRefGoogle Scholar
Ugolini, A., Laffort, B., Castellini, C. & Beugnon, G., 1993. Celestial orientation and ultraviolet perception in Talitrus saltator. Ethology Ecology and Evolution, 5, 489499.CrossRefGoogle Scholar
Ugolini, A. & Macchi, T., 1988. Learned component in the solar orientation of Talitrus saltator Montagu (Amphipoda: Talitridae). journal of Experimental Marine Biology and Ecology, 121, 7987.Google Scholar
Ugolini, A., Vignali, B. & Castellini, C., 1994. Solar orientation and spectral filtering in Talitrus saltator. Bollettino di Zoologia, 61, (supplement), 93.CrossRefGoogle Scholar
Waterman, T.H., 1981. Polarization sensitivity. In Handbook of sensory physiology, vol. VII/6B (ed. H.C., Autrum), pp. 281469. Berlin: Springer Verlag.Google Scholar
Wehner, R., 1994. The polarization-vision project: championing organismic biology. Fortschritte der Zoologie, 39, 103143.Google Scholar
Wehner, R. & Rossel, S., 1985. The bee's celestial compass – a case study in behavioural neurobiology. Fortschritte der Zoologie, 31, 1153.Google Scholar