Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-06-02T23:45:42.065Z Has data issue: false hasContentIssue false

Demography and life history of two rattan species, Eremospatha macrocarpa and Laccosperma secundiflorum, in Côte d'Ivoire

Published online by Cambridge University Press:  01 September 2008

Kouadio I. Kouassi*
Affiliation:
Université d'Abobo-Adjamé, UFR des Sciences de la Nature, 02 BP 801 Abidjan 02, Côte d'Ivoire Laboratoire d'Ecologie des Sols Tropicaux (LEST), UMR 137, IRD, 32 Avenue Henri Varagnat, 93143, Bondy, France
Sébastien Barot
Affiliation:
Laboratoire d'Ecologie des Sols Tropicaux (LEST), UMR 137, IRD, 32 Avenue Henri Varagnat, 93143, Bondy, France
Jacques Gignoux
Affiliation:
Laboratoire de Biochimie et Ecologie des Milieux Continentaux (Biodiversité et fonctionnement des Ecosystèmes), ENS, 46 rue d'Ulm 75230 Paris Cedex 05
Irié A. Zoro Bi
Affiliation:
Université d'Abobo-Adjamé, UFR des Sciences de la Nature, 02 BP 801 Abidjan 02, Côte d'Ivoire
*
1Corresponding author. Email: kouadioignace@yahoo.fr

Abstract:

Two rattans species were studied in Côte d'Ivoire using a stage-classified matrix model to compare their demography and life histories. Respectively 854 and 1009 genets of Eremospatha macrocarpa (pleonanthic) and Laccosperma secundiflorum (hapaxanthic) were censused every 6 mo over 18 mo. The population growth rates of E. macrocarpa (λ = 0.979) and L. secundiflorum (λ = 0.959) were not significantly different from 1. This indicates that the populations were close to equilibrium. However, the difference between the stable stage distributions and the observed distributions indicated temporal variation in vital rates. Elasticity analysis showed that growth and fecundity had lower contributions to λ than the survival rates for the two species. A Life Table Response Experiment revealed that the survival of the first juvenile stage (all stems < 6 m in length), fecundity, growth of the second juvenile stage (at least one stem > 6 m in length) and adult (reproductive) survival highly contribute to the differences between the demography of the two species. Reproduction is postponed longer for L. secundiflorum than for E. macrocarpa and the mean remaining life span for adult genets is shorter for L. secundiflorum than for E. macrocarpa. Finally, our results suggest the existence of two trade-offs within reproduction which suggest that, although the two species have different demographic features, the λ of their populations are not significantly different from 1.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ALVAREZ-BUYLLA, E. R., GARCIA-BARRIOS, R., LARA-MORENCO, C. & MARTINEZ-RAMOS, M. 1996. Demographic and genetic models in conservation biology: applications and perspectives for tropical rain forest tree species. Annual Reviews of Ecology and Systematics 27:387421.CrossRefGoogle Scholar
ANDERSON, P. J. & PUTZ, F. E. 2002. Harvesting and conservation: are both possible for the palm, Iriartea deltoidea? Forest Ecology and Management 170:271283.CrossRefGoogle Scholar
BALICK, M. J. 1987. The economic utilization of the Babassu palm: a conservation strategy for sustaining tropical resources. Journal of the Washington Academy of Science 77:215223.Google Scholar
BAROT, S. & GIGNOUX, J. 1999. Population structure and life cycle of Borassus aethiopum Mart.: evidence of early senescence in a palm tree. Biotropica 31:439448.CrossRefGoogle Scholar
BAROT, S., GIGNOUX, J., LEGENDRE, S. & VUATTOUX, R. 2000. Demography of a savanna palm tree in Ivory Coast (Lamto): population persistence, and life history. Journal of Tropical Ecology 16:637655.CrossRefGoogle Scholar
BAROT, S., GIGNOUX, J. & LEGENDRE, S. 2002. Stage-structured matrix models and age estimates. Oikos 96:5661.CrossRefGoogle Scholar
BEGON, M., TOWNSEND, C. R. & HARPER, J. L. 2006. Ecology. Blackwell Scientific Publications, Oxford. 738 pp.Google Scholar
BERNAL, R. 1998. Demography of the vegetable ivory palm Phytelephas seemannii in Colombia, and the impact of seed harvesting. Journal of Applied Ecology 35:6474.CrossRefGoogle Scholar
BULLOCK, S. H. 1980. Demography of an undergrowth palm in littoral Cameroon. Biotropica 12:247255.CrossRefGoogle Scholar
CASWELL, H. 1996a. Analysis of Life Table Response Experiments II. Alternative parameterizations for size- and stage-structured models. Ecological Modelling 88:7382.CrossRefGoogle Scholar
CASWELL, H. 1996b. Second derivatives of population growth rate: calculation and applications. Ecology 77:870879.CrossRefGoogle Scholar
CASWELL, H. 2001. Matrix population models: construction, analysis, and interpretation. Sinauer Associates, Inc., Sunderland. 722 pp.Google Scholar
CHAZDON, R. L. 1992. Patterns of growth and reproduction of Geonoma congesta, a clustered understory palm. Biotropica 24:4351.CrossRefGoogle Scholar
COCHRAN, M. E. & ELLNER, S. 1992. Simple methods for calculating age-based life history parameters for stage-structured populations. Ecological Monographs 62:345364.CrossRefGoogle Scholar
DE KROON, H., VAN GROENENDAEL, J. & EHRLÉN, J. 2000. Elasticities: a review of methods and model limitations. Ecology 81:607618.CrossRefGoogle Scholar
DE MATOS, M. B. & MATOS, D. M. S. 1998. Mathematical contraints on transition matrix elasticity analysis. Journal of Ecology 86:706708.CrossRefGoogle Scholar
DE STEVEN, D. 1986. Comparative demography of a clonal palm (Oenocarpus mapora subsp. mapora) in Panama. Principes 30:100104.Google Scholar
DE STEVEN, D. 1989. Genet and ramet demography of Oenocarpus mapora ssp. mapora, a clonal palm of Panamian tropical moist forest. Journal of Ecology 77:579596.CrossRefGoogle Scholar
ENDRESS, B. A., GORCHOV, D. L., PETERSON, M. B. & SERRANO, E. P. 2004. Harvest of the palm Chamaedorea radicalis, its effects on leaf production, and implications for sustainable management. Conservation Biology 18:822830.CrossRefGoogle Scholar
ENRIGHT, N. & OGDEN, J. 1979. Applications of transition matrix models in forest dynamics: Araucaria in Papua New Guinea and Nothofagus in New Zealand. Australian Journal of Ecology 4:323.CrossRefGoogle Scholar
ENRIGHT, N. J. & WATSON, A. D. 1992. Population dynamics of the nikau palm, Rhopalostylis sapida (Wendl. et Drude), in a temperate forest remnant near Auckland, New Zealand. New Zealand Journal of Botany 30:2943.CrossRefGoogle Scholar
ESCALANTE, S., MONTANA, C. & ORELLANA, R. 2004. Demography and potential extractive use of the liana palm, Desmoncus orthacanthos Martius (Arecaceae), in southern Quintana Roo, Mexico. Forest Ecology and Management 187:318.CrossRefGoogle Scholar
HALL, P. & BAWA, K. 1993. Methods to assess the impact of extraction of non-timber tropical forest products on plant populations. Economic Botany 47:234247.CrossRefGoogle Scholar
LEGENDRE, S. & CLOBERT, J. 1995. ULM, a software for conservation and evolutionary biologists. Journal of Applied Statistics 22:817834.CrossRefGoogle Scholar
MENGES, E. S. 1990. Population viability analysis for an endangered plant. Conservation Biology 4:5262.CrossRefGoogle Scholar
NABE-NIELSEN, J. 2004. Demography of Machaerium cuspidatum, a shade-tolerant neotropical liana. Journal of Tropical Ecology 20:505516.CrossRefGoogle Scholar
OLMSTED, I. & ALVAREZ-BUYLLA, E. R. 1995. Sustainable harvesting of tropical trees: demography and matrix models of two palm species in Mexico. Ecological Applications 5:484500.CrossRefGoogle Scholar
PIÑERO, D., MARTÍNEZ-RAMOS, M. & SARUKHÁN, J. 1984. A population model of Astrocaryum mexicanum and a sensitivity analysis of its finite rate of increase. Journal of Ecology 72:977991.CrossRefGoogle Scholar
RAMULA, S. & LEHTILÄ, K. 2005. Matrix dimensionality in demographic analyses of plants: when to use smaller matrices? Oikos 111:563573.CrossRefGoogle Scholar
RATSIRARSON, J., SILANDER, J. A. & RICHARD, A. F. 1996. Conservation and management of a threateaned Madagascar palm species, Neodypsis decaryi, Jumelle. Conservation Biology 10:4052.CrossRefGoogle Scholar
RODRIGUEZ-BURITICA, S., ORJUELA, M. A. & GALEANO, G. 2005. Demography and life history of Geonoma orbignyana: an understory palm used as foliage in Colombia. Forest Ecology and Management 211:329340.CrossRefGoogle Scholar
SILVA MATOS, D. M. S., FRECKLETON, R. P. & WATKINSON, A. R. 1999. The role of density dependence in the population dynamics of a tropical palm. Ecology 80:26352650.CrossRefGoogle Scholar
SILVERTOWN, J., FRANCO, M. & MCCONWAY, K. 1992. A demographic interpretation of Grime's triangle. Functional Ecology 6:130136.CrossRefGoogle Scholar
SILVERTOWN, J., FRANCO, M., PISANTY, I. & MENDOZA, A. 1993. Comparative plant demography – relative importance of life-cycle components to the finite rate of increase in woody and herbaceous perennials. Journal of Ecology 81:465476.CrossRefGoogle Scholar
SILVERTOWN, J., FRANCO, M. & MENGES, E. S. 1996. Interpretation of elasticity matrices as an aid to the management of plant populations for conservation. Conservation Biology 10:591597.CrossRefGoogle Scholar
SOUZA, A. F. & MARTINS, F. R. 2006. Demography of the clonal palm Geonoma brevispatha in a neotropical swamp forest. Austral Ecology 31:869881.CrossRefGoogle Scholar
STEARNS, S. 1977. The evolution of life history traits: a critique of the theory and a review of the data. Annual Review of Ecology and Systematics 8:145171.CrossRefGoogle Scholar
STEARNS, S. C. & HOEKSTRA, R. F. 2000. Evolution: an introduction. Oxford University Press. 381 pp.Google Scholar
SUNDERLAND, T. C. H. 2002. Hapaxanthy and pleonanthy in African rattans (Palmae: Calamoideae). Journal of Bamboo and Rattan 1:131139.CrossRefGoogle Scholar
SUNDERLAND, T. C. H. 2007. Field guide to the rattan palms of Africa. Kew Publishing, Royal Botanic Gardens, Kew. 66 pp.Google Scholar
TOMLINSON, P. B. & JEFFREY, E. C. 1990. The structural biology of palms. Clarendon Press, Oxford. 477 pp.CrossRefGoogle Scholar
VALVERDE, T. & SILVERTOWN, J. 1998. Variation in the demography of woodland understorey herb (Primula vulgaris) along the forest regeneration cycle: projection matrix analysis. Journal of Ecology 86:545562.CrossRefGoogle Scholar
ZORO BI, I. A. & KOUASSI, K. I. 2004. Rattan abundance and collection in N'zodji forest (South Eastern Côte d'Ivoire). Revue Ivoirienne des Sciences et Technologie 5:185197.Google Scholar