Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-01T15:29:20.263Z Has data issue: false hasContentIssue false

Turnover in fish species composition is related to water colour of Amazonian rivers

Published online by Cambridge University Press:  09 December 2022

Sérgio Henrique Borges*
Affiliation:
Departamento de Biologia – Av. General Rodrigo O. Jordão Ramos, Universidade Federal do Amazonas (UFAM), 3000, Manaus, AM 69077-000, Brazil
Deyse Darse D’Aquino
Affiliation:
Departamento de Biologia – Av. General Rodrigo O. Jordão Ramos, Universidade Federal do Amazonas (UFAM), 3000, Manaus, AM 69077-000, Brazil
Marcela Victória da Cruz
Affiliation:
Departamento de Biologia – Av. General Rodrigo O. Jordão Ramos, Universidade Federal do Amazonas (UFAM), 3000, Manaus, AM 69077-000, Brazil
Ramison Felipe de Souza
Affiliation:
Departamento de Biologia – Av. General Rodrigo O. Jordão Ramos, Universidade Federal do Amazonas (UFAM), 3000, Manaus, AM 69077-000, Brazil
*
Author for correspondence: Sérgio Henrique Borges, Email: shborges9@gmail.com

Abstract

Variation in water colour is a remarkable characteristic of Amazonian rivers and reflects their limnological properties and the geomorphology of sub-basins. We present here a literature-based study to examine the relationships between fish species turnover and abiotic properties of Amazonian rivers with contrasting water colours. We analysed fish records and water physicochemical properties (pH, colour, turbidity, dissolved oxygen, ammonia and suspended solids) of eight Amazonian rivers with white-, black- and clearwaters. Rivers with similar water colour shared more fish species than those that contrasted in colour. Increased differences in abiotic parameters imply an increased dissimilarity in fish species composition. Species composition is also related to distance among rivers with high dissimilarity observed in rivers distant to each other. The fish species turnover could be ultimately driven by the geological history of rivers which provides different opportunities to speciation and biotic interchange. Water types likely influence species turnover by selecting fishes with different limits of physiological tolerance and specialized use of different habitat types. Our findings suggest that river water colours are reliable proxies for historical and ecological mechanisms affected fish species distribution. Antropic disturbances of Amazonian rivers with distinct water colours could threaten unique fish assemblages.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, JS, Carvalho, TP, Petry, P, Holder, MA, Maxime, EL, Espino, J, Corahua, I, Quispe, R, Rengifo, B, Ortega, H and Reis, RE (2011) Aquatic biodiversity in the Amazon: habitat specialization and geographic isolation promote species richness. Animals 1, 205241.Google Scholar
Barletta, M, Jaureguizar, AJ, Baigun, C, Fontoura, NF, Agostinho, AA, Almeida-Val, VMF, Val, AL, Torres, RA, Jimenes-Segura, LF, Giarrizzo, T, Fabré, NN, Batista, VS, Lasso, C, Taphorn, DC, Costa, MF, Chaves, PT, Vieira, JP and Corrêa, MFM (2010) Fish and aquatic habitat conservation in South America: a continental overview with emphasis on Neotropical systems. Journal of Fish Biology 76, 21182176.Google Scholar
Baselga, A (2012) The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecology and Biogeography 21, 12231232.Google Scholar
Beheregaray, LB, Cooke, GM, Chao, NL and Landguth, EL (2015) Ecological speciation in the tropics: insights from comparative genetic studies in Amazonia. Frontiers in Genetics 5, 119.Google Scholar
Benone, NL, Leal, CG, dos Santos, LL, Mendes, TP, Heino, J and de Assis Montag, LF (2020). Unravelling patterns of taxonomic and functional diversity of Amazon stream fish. Aquatic Sciences 82, 1–11.Google Scholar
Bogotá-Gregory, JD, Lima, FC, Correa, SB, Silva-Oliveira, C, Jenkins, DG, Ribeiro, F, Lovejoy, NR, Reis, RE and Crampton, WG (2020) Biogeochemical water type influences community composition, species richness, and biomass in megadiverse Amazonian fish assemblages. Scientific Reports 10, 15349.Google Scholar
Carvalho, LN, Fidelis, L, Arruda, R, Galuch, AV and Zuanon, JA (2013) Second floor, please: the fish fauna of floating litter banks in Amazonian streams and rivers. Neotropical Ichthyology 11, 8594.Google Scholar
Carvalho, LN, Zuanon, JA and Sazima, I (2007) Natural history of Amazon fishes. In Del-Claro, K and colaborators (Orgs), Encyclopedia of Life Support Systems (EOLSS). Oxford: UNESCO, pp. 130.Google Scholar
Castello, L, Mcgrath, D, Hess, L, Coe, M, Lefebvre, P, Petry, P, Macedo, M, Renó, V and Arantes, C (2013) The vulnerability of Amazon freshwater ecosystems. Conservation Letters 6, 217229.Google Scholar
Clarke, KR and Warwick, RM (2001) Change in Marine Communities: An Approach to Statistical Analysis and Interpretation. Plymouth: PRIMER-E.Google Scholar
Crampton, WGR (2011) An ecological perspective on diversity and distributions. In Albert, J and Reis, R (eds), Historical Biogeography of Neotropical Freshwater Fishes. Berkeley: University of California Press, pp. 165189.Google Scholar
Dagosta, F and de Pinna, M (2017) Biogeography of Amazonian fishes: deconstructing river basins as biogeographic units. Neotropical Ichthyology 15, e170034.Google Scholar
Dagosta, F and de Pinna, M (2019) The fishes of the Amazon: distribution and biogeographical patterns, with a comprehensive list of species. Bulletin of the American Museum of Natural History 431, 1163.Google Scholar
Duncan, WP and Fernandes, MN (2010) Physicochemical characterization of the white, black, and clearwater rivers of the Amazon Basin and its implications on the distribution of freshwater stingrays (Chondrichthyes, Potamotrygonidae). Pan-American Journal of Aquatic Sciences 5, 454464.Google Scholar
Flores, BM, Holmgren, M, Xu, C, Nes, EHV, Jakova, CC, Mesquita, RC, Scheffer, M (2017) Floodplains as an Achilles’ heel of Amazonian forest resilience. Proceedings of the National Academy of Sciences 114, 44424446.Google Scholar
Goulding, MJ, Barthem, R and Ferreira, E (2003) The Smithsonian atlas of the Amazon. Washington: Smithsonian Books.Google Scholar
Henderson, P and Crampton, W (1997) A comparison of fish diversity and abundance between nutrient-rich and nutrient-poor lakes in the upper Amazon. Journal of Tropical Ecology 13, 175198.Google Scholar
Hubert, N and Renno, JF (2006) Historical biogeography of South American freshwater fishes. Journal of Biogeography 33, 14141436.Google Scholar
Jézéquel, C, Tedesco, PA, Bigorne, R, Maldonado-Ocampo, JA, Ortega, H, Hidalgo, M, Martens, K, Torrente-Vilara, G, Zuanon, J, Acosta, A, Agudelo, E, Barrera Maure, S, Bastos, DA, Bogotá-Gregory, J, Cabeceira, FG, Canto, AL, Carvajal-Vallejos, FM, Carvalho, LN, Cella-Ribeiro, A, Covain, R, Donascimiento, C, Doria, CR, Duarte, C, Ferreira, EJ, Galuch, AV, Giarrizzo, T, Leitão, RP, Lundberg, JG, Maldonado, M, Mojica, J, Montag, LF, Ohara, WM, Pires, TH, Pouilly, M, Prada-Pedreros, S, de Queiroz, LJ, Rapp Py-Daniel, LH, Ribeiro, F, Ríos Herrera, R, Sarmiento, J, Sousa, LM, Stegmann, LF, Valdiviezo-Rivera, J, Villa, FD, Yunoki, T and Oberdorff, T (2020) A database of freshwater fish species of the Amazon Basin. Scientific Data 7, 96.Google Scholar
Junk, W, Soares, MGM and Bayley, PB (2007) Freshwater fishes of the Amazon River basin: their biodiversity, fisheries, and habitats. Aquatic Ecosystem Health & Management 10, 153173.Google Scholar
Laranjeira, TO, Naka, LN and Cohn-Haft, M (2019) Using river color to predict Amazonian floodplain forest avifaunas in the world’s largest blackwater river basin. Biotropica 51, 330341.Google Scholar
Leprieur, F and Oikonomou, A (2017) The need for richness independent measures of turnover when delineating biogeographical regions. Journal of Biogeography 41, 417420.Google Scholar
Levêque, C, Oberdorff, T, Paugy, D, Stiassny, MLJ and Tedesco, PA (2008) Global diversity of fish (Pisces) in freshwater. Hydrobiologia 595, 545567.Google Scholar
Macedo, M and Castello, L (2015) State of the Amazon: freshwater connectivity and ecosystem health. In Oliveira, D, Maretti, CC, Charity, S (eds), WWF Living Amazon Initiative. Brazil: WWF, pp. 1136.Google Scholar
Mason, NW, Mouillot, D, Lee, WG and Wilson, JB (2005) Functional richness, functional evenness and functional divergence: the primary components of functional diversity. Oikos 111, 112118.Google Scholar
Mérona, B, Juras, AA, Santos, GM and Cintra, IH (2010) Os peixes e a pesca no baixo Rio Tocantins: vinte anos depois da UHE Tucuruí. Brasil: Centrais Elétricas do Brasil S. A – Eletrobrás/Eletronorte.Google Scholar
Nekola, JC and White, PS (1999) The distance decay of similarity in biogeography and ecology. Journal of Biogeography 26, 867878.Google Scholar
Oberdorff, T, Dias, MS, Jézéquel, C, Albert, JS, Arantes, CC, Bigorne, R, Carvajal-Valleros, FM, Wever, AD, Frederico, RG, Hidalgo, M, Hugueny, B, Leprieur, F, Maldonado, M, Maldonado-Ocampo, JA, Martens, K, Ortega, H, Sarmiento, J, Tedesco, PA, Torrente-Vilara, G, Winemiller, KO and Zuanon, JA (2019) Unexpected fish diversity gradients in the Amazon basin. Science Advances 5, 119.Google Scholar
Oberdorff, T, Tedesco, PA, Hugueny, B, Leprieur, F, Beauchard, O, Brosse, S and Durr, HH (2011) Global and regional patterns in riverine fish species richness: a review. International Journal of Ecology 12, 112.Google Scholar
Piedade, MTF, Junk, W, D’Ângelo, SA, Wittmann, F, Schöngart, J, Barbosa, KLM and Lopes, A (2010) Aquatic herbaceous plants of the Amazon floodplains: state of the art and research needed. Acta Limnologica Brasiliensia 22, 165178.Google Scholar
Pires, TH, Borghezan, ED, Machado, VN, Powell, DL, Röpke, CP, Oliveira, C, Zuanon, JA and Farias, IP (2018) Testing Wallace’s intuition: water type, reproductive isolation and divergence in an Amazonian fish. Journal of Evolutionary Biology 31, 882892.Google Scholar
Ríos-Villamizar, EA, Piedade, MTF, Da Costa, JG, Adeney, JM and Junk, WJ (2014) Chemistry of different Amazonian water types for river classification: a preliminary review. WIT Transactions on Ecology and the Environment 178, 1728.Google Scholar
Saint-Paul, U, Zuanon, J, Correa, MA, Garcia, M, Fabré, NN, Berger, U and Junk, WJ (2000) Fish communities in central Amazonian white- and blackwater floodplains. Environmental Biology of Fishes 57, 235250.Google Scholar
Silva, MSR (2013) Bacia hidrográfica do Rio Amazonas: contribuição para o enquadramento e preservação . Phd Thesis, Universidade Federal do Amazonas. Available at https://tede.ufam.edu.br/handle/tede/3152 Google Scholar
Silva, MSR, Miranda, SAF, Domingos, RN, Silva, SLR and Santana, GP (2013) Classificação dos rios da Amazônia: uma estratégia para a preservação desses recursos. Holos Enviroment 13, 112.Google Scholar
Sioli, H (1984) The Amazon and its main affluents: hydrography, morphology of the river courses, and river types. In Sioli, H (ed), The Amazon: Limnology and Landscape Ecology. Boston: Dr Junk W Publishers, pp. 127165.Google Scholar
Sleen, PV and Albert, JS (2018) Field Guide to the Fishes of the Amazon, Orinoco, and Guianas. New Jersey: Princeton University Press.Google Scholar
Val, AL and Almeida-Val, VMF (1995) Fishes of the Amazon and Their Environments: Physiological and Biochemical Features. Heidelberg: Springer Verlag.Google Scholar
Venticinque, E, Forsberg, B, Barthem, R, Petry, P, Hess, L, Mercado, A, Cañas, C, Montoya, M, Durigan, C and Goulding, M (2016) An explicit GIS-based river basin framework for aquatic ecosystem conservation in the Amazon ecosystem conservation in the Amazon. Earth System Science 8, 651661.Google Scholar
Wallace, A (1889) A Narrative of Travels on the Amazon and Rio Negro, with an Account of the Native Tribes, and Observations on the Climate, Geology, and Natural History of the Amazon Valley. London: Ward Lock, and Co.Google Scholar
Zar, JH (2010) Biostatistical Analysis, 5th Edn. Essex: Prentice-Hall/Pearson.Google Scholar