Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-01T06:08:42.877Z Has data issue: false hasContentIssue false

Variation in soil biological characteristics on an elevational gradient in the montane forest of north-west Argentina

Published online by Cambridge University Press:  01 July 2008

Adriana B. Abril*
Affiliation:
Microbiología Agrícola, Departamento de Recursos Naturales, Facultad de Ciencias Agropecuarias, Universidad Nacional de Córdoba. C.C. 509, 5000, Córdoba, Argentina
Enrique H. Bucher
Affiliation:
Centro de Zoología Aplicada, Universidad Nacional de Córdoba, Argentina
*
1Corresponding author. Email: aabril@agro.uncor.edu

Extract

Montane tropical and subtropical rain forests are complex ecosystems, characterized by marked rainfall and temperature gradients with altitude, which in turn control the vegetation altitudinal zones (Hueck 1978). Montane forests are often referred to as cloud forests in recognition of the important influence of a dense and frequent cloud cover that conditions forest structure and functioning (Bautista-Cruz & del Castillo 2005, Holder 2004).

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

ABRIL, A. & BUCHER, E. H. 1999. The effects of overgrazing on soil microbial community and fertility in the dry savannas of Argentina. Applied Soil Ecology 12:159167.CrossRefGoogle Scholar
ABRIL, A., BARTTFELD, P. & BUCHER, E. H. 2005. The effects of fire and overgrazing disturbs on soil carbon balance in the dry Chaco forest. Forest Ecology and Management 206:399405.Google Scholar
ACEÑOLAZA, P. G. & GALLARDO-LANCHO, J. F. 1999. Leaf decomposition and nutrient release in the montane forest of northwestern Argentina. Journal of Tropical Forest Science 11:619630.Google Scholar
ALEF, K. 1995a. Soil respiration. Pp. 214219 in Alef, K. & Nannipieri, P. (eds.). Methods in applied soil microbiology and biochemistry. Academic Press, London.Google Scholar
ALEF, K. 1995b. Estimation of nitrogenase activity of free-living bacteria in soil. Pp. 234245 in Alef, K. & Nannipieri, P. (eds.). Methods in applied soil microbiology and biochemistry. Academic Press, London.Google Scholar
BAUTISTA-CRUZ, A. & DEL CASTILLO, R. F. 2005. Soil changes during secondary succession in a tropical montane cloud forest area. Soil Science Society of America Journal 69:906914.CrossRefGoogle Scholar
BROWN, A. D. 1995. Las selvas de montaña del Noroeste Argentino. Pp. 918 in Brown, A. D. & Grau, H. R. (eds.). Investigación, conservación y desarrollo en selvas subtropicales de montaña. Universidad Nacional de Tucumán, Tucumán, Argentina.Google Scholar
BRUIJNZEEL, L. A. & VENEKLAAS, E. J. 1998. Climatic conditions and tropical montane forest productivity: the fog has not lifted yet. Ecology 79:39.CrossRefGoogle Scholar
DÖBEREINER, J. 1995. Isolation and identification of aerobic nitrogen fixing bacteria from soil and plants. Pp. 134141 in Alef, K. & Nannipieri, P. (eds.). Methods in applied soil microbiology and biochemistry. Academic Press, London.Google Scholar
FORSTER, J. C. 1995. Soil nitrogen. Pp. 7987 in Alef, K. & Nannipieri, P. (eds.). Methods in applied soil microbiology and biochemistry. Academic Press, London.Google Scholar
GOLLER, R., WILCKE, W., FLEISCHBEIN, K., VALAREZO, C. & ZECH, W. 2006. Dissolved nitrogen, phosphorus, and sulfur forms in the ecosystem fluxes of a montane forest in Ecuador. Biogeochemistry 77:5789.Google Scholar
GRAU, H. R., EASDALE, T. A. & PAOLINI, L. 2003. Subtropical dendroecology-dating disturbances and forest dynamics in northwestern Argentina montane ecosystems. Forest Ecology and Management 177:131143.CrossRefGoogle Scholar
HOLDER, C. D. 2004. Rainfall interception and fog precipitation in a tropical montane cloud forest of Guatemala. Forest Ecology and Management 190:373384.Google Scholar
HUECK, K. 1978. Los bosques de sudamérica. Ecología, composición e importancia económica. GTZ, Eschborn. 476 pp.Google Scholar
HUNZINGER, H. 1995. La precipitacion horizontal: su importancia para el bosque y a nivel de cuencas en la Sierra San Javier, Tucumán, Argentina. Pp. 5358 in Brown, A. D. & Grau, H. R. (eds.). Investigación, conservación y desarrollo en selvas subtropicales de montaña. Universidad Nacional de Tucumán, Tucumán, Argentina.Google Scholar
JOERGENSEN, R. 1995. The fumigation extraction methods. Pp. 293314 in Alef, K. & Nannipieri, P. (eds.). Methods in applied soil microbiology and biochemistry. Academic Press, London.Google Scholar
KAPPELLE, M., VANUFFELEN, J. G. & CLEEF, A. M. 1995. Altitudinal zonation of montane forests along two transects in Chirripo National Park, Costa Rica. Vegetatio 119:119153.Google Scholar
KEENEY, D. & NELSON, D. 1982. Nitrogen inorganic forms. Pp. 643698 in Page, A. L., Milles, R. H. & Keeney, D. R. (eds.). Methods of soil analysis. American Society of Agronomy and Soil Science Society of America, Madison.Google Scholar
KENNEDY, C. & BISHOP, P. 2004. Genetics of nitrogen fixation and related aspects of metabolism in species of Azotobacter: history and current status. Pp. 2752 in Klipp, W., Masepohl, B., Gallon, J. R. & Newton, W. E. (eds.). Genetics and regulation of nitrogen fixation in free-living bacteria. Kluwer Academic Publishers, Dordrecht.Google Scholar
KLUTE, A. (ed.). 1986. Methods of soil analysis. Vol. 1. Physical and mineralogical methods. American Society of Agronomy and Soil Science, Madison. 980 pp.CrossRefGoogle Scholar
LORCH, H. J., BENCKIESER, G. & OTTOW, J. C. 1995. Basic methods for counting microorganisms in soil and water. Pp. 146161 in Alef, K. & Nannipieri, P. (eds.). Methods in applied soil microbiology and biochemistry. Academic Press, London.Google Scholar
MINGRAMM, A., RUSSO, A., POZZO, A. & CAZAU, L. 1979. Sierras Subandinas. Pp. 95137 in Geología regional argentina. Academia Nacional de Ciencias, Córdoba.Google Scholar
NELSON, D. W. & SOMMERS, L. E. 1982. Total carbon, organic carbon and organic matter. Pp. 570574 in Page, A. L.Milles, R. H. & Keeney, D. R. (eds.). Methods of soil analysis. American Society of Agronomy and Soil Science Society of America, Madison.Google Scholar
NOMURA, N. & KIKUZAWA, K. 2003. Productive phenology of tropical montane forests: fertilization experiments along a moisture gradient. Ecological Research 18:573586.Google Scholar
OLANDER, L. P., SCATENA, F. N. & SILVER, W. 1998. Impacts of disturbance initiated by road construction in a subtropical cloud forest in the Luquillo Experimental forest, Puerto Rico. Forest Ecology and Management 109:3349.Google Scholar
OLSEN, S. R. & SOMMER, L. E. 1982. Phosphorus. Pp. 403430 in Page, A. L., Milles, R. H. & Keeney, D. R. (eds.). Methods of soil analysis. American Society of Agronomy and Soil Science Society of America, Madison.Google Scholar
PARKER, G. G. 1994. Soil fertility, nutrient acquisition and nutrient cycling. Pp. 5464 in McDade, L. A., Bawa, K. S., Hespenheide, H. A. & Hartshorn, G. S.La Selva: ecology and natural history of a neotropical rain forest. University of Chicago Pres, Chicago.Google Scholar
SOLLINS, P., SANCHO, F., MATA, R. & SANFORD, R. L. 1994. Soil and soil process research. Pp. 3453 in McDade, L. A., Bawa, K. S., Hespenheide, H. A. & Hartshorn, G. S.La Selva: ecology and natural history of a neotropical rain forest. University of Chicago Press, Chicago.Google Scholar
VERCHOT, L. V. 1999. Cold storage of a tropical soil decreases nitrifica-tion potential. Soil Science Society of America Journal 63:19421944.CrossRefGoogle Scholar
WERNER, D. 1995. Symbiosis of plants and microbes. Chapman & Hall, London. 389 pp.Google Scholar