Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-02T18:00:24.764Z Has data issue: false hasContentIssue false

Dynamics of Gaussian spikes on Gaussian laser beam in relativistic plasma

Published online by Cambridge University Press:  14 September 2009

A. Singh*
Affiliation:
Department of Physics, National Institute of TechnologyJalandhar, Punjab, India
M. Aggarwal
Affiliation:
Department of Physics, National Institute of TechnologyJalandhar, Punjab, India
T.S. Gill
Affiliation:
Department of Physics, Guru Nanak Dev University, Amritsar, India
*
Address correspondence and reprint requests to: Arvinder Singh, Department of Physics, National Institute of TechnologyJalandhar, Punjab, India. E-mail: arvinder6@lycos.com

Abstract

In the present paper, we have investigated the growth of a Gaussian perturbation superimposed on a Gaussian laser beam. The nonlinearity we have considered is of relativistic type. We have setup the nonlinear differential equations for beam width parameter of the main beam, growth and width of the laser spike by using the WKB and paraxial ray approximation. These are coupled ordinary differential equations and therefore these are simultaneously solved numerically using the Runge Kutta method. It has been observed from the analysis that self-focusing/defocusing of the main beam and the spike determine the growth dynamic of the spike.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abbi, S.C. & Mahr, H. (1971). Correlation of filaments in nitrobenzene with laser spikes. Phys. Rev. Lett. 26, 604606.CrossRefGoogle Scholar
Akhmanov, S.A., Sukhorukov, A.P. & Khokhlov, R.V. (1968). Self-focusing and diffraction of light in a nonlinear medium. Sov. Phys. Uspekhi. 10, 609636.CrossRefGoogle Scholar
Bingham, R. & Lashmore-Davies, C.N. (1976). Self-modulation and filamentation of electromagnetic waves in a plasma. Nuc. Fusion. 16, 6772.CrossRefGoogle Scholar
Bingham, R. & Lashmore-Davies, C.N. (1979). On the nonlinear development of the filamentation of an electromagnetic wave in a plasma. Plasma Phys. 21, 433453.CrossRefGoogle Scholar
Bingham, R., Short, R., Williams, E., Villeneuve, D. & Richardson, M.C. (1984). The filamentation instability at short wavelengths. Plasma Phys. Contr. Fusion 26, 10771082.CrossRefGoogle Scholar
Borisov, A.B., Borovskiy, A.V., Shiryaev, O.B., Korobkin, V.V., Prokhorov, A.M., Solem, J.C., Luk, T.S., Boyer, K. & Rhodes, C.K. (1992a). Relativistic and charge-displacement self-channeling of intense ultrashort laser pulses in plasmas. Phys. Rev. A 45, 58305845.CrossRefGoogle ScholarPubMed
Borisov, A.B., Borovskiy, A.V., Korobkin, V.V., Prokhorov, A.M., Shiryaev, O.B., Shi, X.M., Luk, T.S., McPherson, A., Solem, J.C., Boyer, K. & Rhodes, C.K. (1992b). Observation of relativistic and charge-displacement self-channeling of Intense sub picosecond Ultraviolet(248 nm) radiation in Plasmas. Phys. Rev. Lett. 68, 23092312.CrossRefGoogle Scholar
Borghesi, M., Kar, S., Romagnani, L., Toncian, T., Antici, P., Audebert, P., Brambrink, E., Ceccherini, F., Cecchetti, C.A., Fuchs, J., Galimberti, M., Gizzi, L.A., Grismayer, T., Lyseikina, T., Jung, R., Macchi, A., Mora, P., Osterholtz, J., Schiavi, A. & Willi, O. (2007). Impulsive electric fields driven by high-intensity laser matter interactions. Laser Part. Beams 25, 161167.CrossRefGoogle Scholar
Drake, J.F., Kaw, P.K., Lee, Y.C., Schimd, G., Liu, C.S. & Rosenbluth, M.N. (1974). Parametric instabilities of electromagnetic waves in plasmas. Phys. Fluids. 17, 778.CrossRefGoogle Scholar
Esarey, E., Sprangle, P., Krall, J. & Ting, A. (1996). Overview of plasma-based accelerator concepts. IEEE Trans Plasma Sci. 24, 252288.CrossRefGoogle Scholar
Faenov, A.Ya., Magunov, A.I., Pikuz, T.A., Skobelev, I.Yu., Gasilov, S.V., Stagira, S., Calegari, F., Nisoli, M., De Silvestri, S., Poletto, L., Villoresi, P. & Andreev, A.A. (2007). X-ray spectroscopy observation of fast ions generation in plasma produced by short low-contrast laser pulse irradiation of solid targets. Laser Part. Beams 25, 267275.CrossRefGoogle Scholar
Fuchs, J., Adams, J.C., Amiranoff, F., Baton, S.D., Blanchot, N., Gallant, P., Gremillet, L., Heron, A., Kieffer, J.C., Laval, G., Malka, G., Miquel, J.L., Mora, P., Pepin, H. & Rousseaux, C. (1999). Experimental study of laser penetration in overdense plasma at relativistic intensities. I: Hole boring through performed plasmas layers. Phys. Plasmas 6, 25632568.CrossRefGoogle Scholar
Gibbon, P. & Forster, E. (1996). Short-pulse laser-plasma interaction. Plasma Phys. Contr. Fusion, 38, 769793.CrossRefGoogle Scholar
Gill, T.S. & Saini, N.S. (2007). Nonlinear interaction of a rippled laser beam with an electrostatic upper hybrid wave in collisional plasma. Laser Part. Beams 25, 283293.CrossRefGoogle Scholar
Herbst, M.J., Clayton, C.E., Peebles, W.A. & Chen, F.F. (1980). Studies of sidescatter and backscatter from pre-ionized plasmas. Phys. Fluids. 23, 1319.CrossRefGoogle Scholar
Herbst, M.J., Stamper, J.A., Whitlock, R.R., Lehmberg, R.H. & Ripin, B.H. (1981). Evidence from X-Ray, 3/2 ω0, and 2ω0 emission for laser filamentation in a plasma. Phys. Rev. Lett. 46, 328331.CrossRefGoogle Scholar
Hoffmann, D.H.H., Blazevic, A., Ni, P., Rosmej, O., Roth, M., Tahir, N., Tauschwitz, A., Udrea, S., Varentsov, D., Weyrich, K. & Maron, Y. (2005). Present and future perspective for high energy density physics with intense heavy ions and laser beams. Laser Part. Beams 23, 395–395.CrossRefGoogle Scholar
Hora, H. (1975). Theory of relativistic self-focusing of laser radiation in plasmas. J. Opt. Soc. Am. 65, 882886.CrossRefGoogle Scholar
Joshi, C., Clayton, C.E. & Chen, F.F. (1982). Resonant self-focusing of laser light in a plasma. Phys.Rev. Lett. 46, 874877.CrossRefGoogle Scholar
Kasperczuk, A., Pisarczyk, T., Kalal, M., Martinkova, M., Ullschmied, J., Krousky, E., Masek, K., Pfeifer, M., Rohlena, K., Skala, J. & Pisarczyk, P. (2008). PALS laser energy transfer into solid targets and its dependence on the lens focal point position with respect to the target surface. Laser Part. Beams 26, 189196.CrossRefGoogle Scholar
Kruer, W.L. (2000). Interaction of plasmas with intense lasers. Phys. Plasmas 7, 22702278.CrossRefGoogle Scholar
Kuehl, Th., Ursescu, D., Bagnoud, v., Javorkova, D., Rosmej, O., Cassou, K., Kazamias, S., Klisnick, A., Ros, D., Nickles, P., Zielbauer, B., Dunn, J., Neumayer, P., Pert, G. & The Phelix Team. (2007). Optimization of the non thermal incidence, transient pumped plasma X-ray laser for laser spectroscopy and plasma diagnostics at the facility for antiproton and ion research (FAIR). Laser Part. Beams 25, 9397.CrossRefGoogle Scholar
Laska, L., Badziak, J., Boody, F.P., Gammino, S., Jungwirth, K., Krasa, J., Krousky, E., Parys, P., Pfeifer, M., Rohlena, K., Ryc, L., Skala, J., Torrisi, L., Ullschmied, J. & Wolowski, J. (2007). Factor influencing parameters of laser ion sources. Laser Part. Beams 25, 199205.CrossRefGoogle Scholar
Max, C.E., Arons, J. & Langdon, A.B. (1974). Self-modulation and self focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 33, 209212.CrossRefGoogle Scholar
Modena, A., Najmudin, Z., Dangor, A.E., Clayton, C.E., Marsh, K.A., Joshi, C., Malka, V., Darrow, C.B., Danson, C., Neely, D. & Walsh, F.N. (1995). Electron acceleration from the breaking of relativistic plasma waves. Nat. (London) 377, 606608.CrossRefGoogle Scholar
Monot, P., Auguste, T., Gibbon, P., Jakober, F. & Mainfray, G. (1995). Experimental demonstration of relativistic self channeling of a Multiterawatt laser pulse in an underdense plasma. Phys. Rev. Lett. 74, 29532956.CrossRefGoogle Scholar
Osman, F., Castillo, R. & Hora, H. (1999). Relativistic and ponderomotive self focusing at laser-plasma interaction. J. Plasma Phys. 61, 263273.CrossRefGoogle Scholar
Pukhov, A. & Meyer-ter-Vehn, J. (1996). Relativistic magnetic self-channeling of light in near-critical plasma: Three-dimensional particle-in-cell simulation. Phys. Rev. Lett. 76, 39753978.CrossRefGoogle ScholarPubMed
Purohit, G., Chauhan, P.K. & Sharma, R.P. (2008). Excitation of an upper hybrid wave by a high power laser beam in plasma. Laser Part. Beams 26, 6167.CrossRefGoogle Scholar
Rankin, R., Capjack, C.E. & James, C.R. (1989). Diffraction and the evolution of small scale filaments in a laser-produced plasma. Phys. Rev. Lett. 63, 15971600.CrossRefGoogle Scholar
Schaumann, G., Schollmeier, M.S., Rodriguez-Prieto, G., Blazevic, A., Brambrink, E., Geissel, M., Korostiy, S., Pirzadeh, P., Roth, M., Rosmej, F.B., Faenov, A.Y., Pikuz, T.A., Tsigutkin, K., Maron, Y., Tahir, N.A. & Hoffmann, D.H.H. (2005). High energy heavy ion jets emerging from laser plasma generated by long pulse laser beams from the NHELIX laser system at GSI. Laser Part. Beams, 23, 503512.CrossRefGoogle Scholar
Schmidt, G. & Horton, W. (1985). Self focusing of laser beam in the beat-wave accelerator. Comments Plasma Phys. Contr. Fusion 9, 85.Google Scholar
Singh, A. & Singh, T. (1991 a). Nonlinear interaction of rippled laser beam with unmagnetized plasma. Plasma Phys. Contr. Fusion 33, 123133.CrossRefGoogle Scholar
Singh, A. & Singh, T. (1991 b). Growth of a laser ripple on a gaussian beam in a collisionless Magnetoplasma and its effect on the Excitation of Ion Acoustic wave. Contrib. Plasma Phys. 31, 499512.CrossRefGoogle Scholar
Sodha, M.S., Ghatak, A.K. & Tripathi, V.K. (1976). Progress in Optics. Amsterdam: North Holland.Google Scholar
Stoehlker, T., Backe, H., Beyer, H., Bosch, F., Braeuning-Demian, A., Hagman, S., Ionescu, D., Jungmann, K., Kluge, H.-J., Kozhuharov, C., Kuehl, Th., Lisen, D., Mann, R., Mokler, P. & Quint, W. (2003). Status and perspectives of atomic physics research at GSI: The new GSI accelerator project. Nucl. Instr. Meth. B 205, 156.CrossRefGoogle Scholar
Strangio, C., Caruso, A., Neely, D., Andreoli, P.L., Anzalone, R., Clarke, R., Cristofari, G., Del Prete, E., Di Giorgio, G., Murphy, C., Ricci, C., Stevens, R. & Tolley, M. (2007). Production of multi-Mev per nucleon ions in the controlled amount of matter mode (CAM) by using casually isolated targets. Laser Part. Beams 25, 8591.CrossRefGoogle Scholar
Tabak, M., Hammer, J., Glinsky, M.E., Kruer, W.L., Wilks, S.C., Woodworth, J., Campbell, E.M., Perry, M.D. & Mason, R.J. (1994). Ignition and high gain with ultrapower high lasers. Phys. Plasmas. 1, 16261634.CrossRefGoogle Scholar
Tanaka, K.A., Kodama, R., Fujita, H., Heya, M., Izumi, N., Kato, Y., Kitagawa, Y., Mima, K., Miyanaga, N., Norimatsu, T., Pukhov, A., Sunahara, A., Takahashi, K., Allen, M., Habara, H., Iwatani, T., Matusita, T., Miyakosi, T., Mori, M., Setoguchi, H., Sonomoto, T., Tanpo, M., Tohyama, S., Azuma, H., Kawasaki, T., Komeno, T., Maekawa, O., Matsuo, S., Shozaki, T., Suzuki, K.A., Yoshida, H. & Yamanaka, T. (2000). Studies of ultra-intense laser plasma interaction for fast ignition. Phys. Plasmas 7, 20142022.CrossRefGoogle Scholar
Torrisi, L., Margarone, D., Laska, L., Krasa, J., Velyhan, A., Pfeifer, M., Ullschmied, J. & Ryc, L. (2008). Self focusing effects in Au-target induced by high power pulsed laser at PALS. Laser Part. Beams 26, 379387.CrossRefGoogle Scholar
Umstadter, D., Chen, S.-Y., Maksimchuk, A., Mourou, G. & Wagner, R. (1996). Non linear optics in Relativistic plasmas and laser wake field accelerations of electrons. Scien. 273, 472475.CrossRefGoogle Scholar
Umstadter, D. (2003). Relativistic laser-plasma interactions. J. Phys. D. 36, R151R165.CrossRefGoogle Scholar
Willi, O., Rumsby, P.T. & Zunqi, L. (1984). Filamentation instability in laser produced plasmas. In proceedings of Laser interaction and related plasma phenomena, (Edited by Hora, and Miley, ) Vol.6, New York: Plenum Press.Google Scholar
Young, P.E., Baldis, H.A., Drake, R.P., Campbell, E.M. & Estabrook, K.G. (1988). Direct evidence of ponderomotive filamentation in a laser-produced plasma. Phys.Rev.Lett. 61, 23362339.CrossRefGoogle Scholar
ZhiZhan, X., Yuguang, X., Guangyu, Y., Yanzhen, Z., Jiajin, Y. & Lee, P.H.Y. (1983). Second-harmonic emission from laser-plasma interactions. J. App. Phys. 54, 4902.CrossRefGoogle Scholar