Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-06-02T02:22:20.477Z Has data issue: false hasContentIssue false

Enhanced vacuum laser-impulse coupling by volume absorption at infrared wavelengths

Published online by Cambridge University Press:  09 March 2009

C. R. Phipps Jr
Affiliation:
Los Alamos National Laboratory, Chemical and Laser Sciences Division, Mail Stop E543, Los Alamos, New Mexico 87545
R. F. Harrison
Affiliation:
Los Alamos National Laboratory, Chemical and Laser Sciences Division, Mail Stop E543, Los Alamos, New Mexico 87545
T. Shimada
Affiliation:
Los Alamos National Laboratory, Chemical and Laser Sciences Division, Mail Stop E543, Los Alamos, New Mexico 87545
G. W. York
Affiliation:
Los Alamos National Laboratory, Chemical and Laser Sciences Division, Mail Stop E543, Los Alamos, New Mexico 87545
T. P. Turner
Affiliation:
Los Alamos National Laboratory, Chemical and Laser Sciences Division, Mail Stop E543, Los Alamos, New Mexico 87545
X. F. Corlis
Affiliation:
Los Alamos National Laboratory, Chemical and Laser Sciences Division, Mail Stop E543, Los Alamos, New Mexico 87545
H. S. Steele
Affiliation:
Los Alamos National Laboratory, Chemical and Laser Sciences Division, Mail Stop E543, Los Alamos, New Mexico 87545
L. C. Haynes
Affiliation:
Los Alamos National Laboratory, Chemical and Laser Sciences Division, Mail Stop E543, Los Alamos, New Mexico 87545
T. R. King
Affiliation:
Boeing Aerospace Company, Physical Sciences Research Center, Mail Stop 2R-00, P.O. Box 3999, Seattle, WA 98124

Abstract

We report measurements of vacuum laser impulse coupling coefficients as large as 90 dyne/W, obtained with single μs-duration CO2 laser pulses incident on a volume-absorbing, cellulose-nitrate-based plastic. This result is the largest coupling coefficient yet reported at any wavelength for a simple, planar target in vacuum, and partly results from expenditure of internal chemical energy in this material. Enhanced coupling was also observed in several other target materials that are chemically passive, but absorb light in depth at 10-μm and 3-μm wavelengths. We discuss the physical distinctions between this important case and that of simple, planar surface absorbers [such as metals] which were studied in the same experimental series, in light of the predictions of a simple theoretical model. Ablation parameters for use with the model were determined in separate experiments near threshold in air and in vacuum. The transition from volume- to surface-absorption behavior in the infrared is described as being controlled by fluence-limiting and wavelength conversion in the uppermost target layer.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alcock, A. J., & Corkum, P. B. 1979 Can. J. Phys., 57, 1280.CrossRefGoogle Scholar
Alcock, A. J., Corkum, P. B. & James, D. J. 1975 Appl. Phys. Lett. 27, 680.CrossRefGoogle Scholar
Auerbach, J. M., Holmes, N. C., Hunt, J. T. & Linford, G. J. 1979 Appl. Opt. 18, 2495.CrossRefGoogle Scholar
Baier, E., ed. 1963 Engineering Design for Plastics (Reinhold, New York) pp. 827834.Google Scholar
Brandrup, J. & Immergut, E. H., eds. 1977 Polymer Handbook (Interscience, Wiley, New York) pp. V56.Google Scholar
Fan, J. C. C. & Spura, S. A. 1977 Appl. Phys. Lett. 30, 511.CrossRefGoogle Scholar
Fedoroff, B. T. & Sheffield, O. E. 1962 Encyclopedia of Explosives and Related Items (Picatinny Arsenal, Dover, New Jersey), Vol. 2, pp. C-100–113.Google Scholar
Figueira, J. F., Czuchlewski, S. J., Phipps, C. R. Jr., & Thomas, S. J. 1981 Appl. Opt. 20, 838.CrossRefGoogle Scholar
Genzel, L. & Kreibig, U. 1980 Z. Physik B37, 93.CrossRefGoogle Scholar
Gray, D. E., ed. 1972 American Institute of Physics Handbook, 3rd edition (McGraw-Hill, New York), p. 6124 and ff.Google Scholar
Grayson, M., ed. 1983 Encyclopedia of Composite Materials and Components (Interscience, Wiley, New York) pp. 7, 8, 190, 193.Google Scholar
Mark, H. F., Gaylord, N. G. & Bikales, N. M., eds. 1965 Encyclopedia of Polymer Science and Technology (Interscience, Wiley, New York); Cellulose Acetate 3, p. 345 and 13, p. 780. PMMA 13, p. 780 and 13, pp. 804–805.Google Scholar
Max, C. E., Mead, W. C. & Thomson, J. J. 1976 Appl. Phys. Lett. 29, 783.CrossRefGoogle Scholar
Miles, F. D. 1955 Cellulose Nitrate (Oliver and Boyd, London) pp. 206213.Google Scholar
Palik, E. D., ed. 1985 Handbook of Optical Constants of Solids (Academic, New York).Google Scholar
Phipps, C. R., Thomas, S. J. & Watkins, D. E. 1980 Proc. Int'l. Conf. Lasers '79, V. J. Corcoran ed.(STS Press,McLean) p. 878.Google Scholar
Phipps, C. R. Jr., Turner, T. P., Harrison, R. F., York, G. W., Osborne, W. Z., Anderson, G. K., Corlis, X. F., Haynes, L. C., Steele, H. S. & Spicochi, K. C. 1988 J. Appl. Phys. 64, 1083.CrossRefGoogle Scholar
Phipps, C. R. Jr., Thomas, S. J. & Harrison, R. F. (1989) in preparation.Google Scholar
Rollins, C. R., Rosen, D. J. & Chen, J. 1988 Physical Science, Inc. report SR-334.Google Scholar
Sheheen, T. W., Czuchlewski, S. J., Hyde, J. & Ainsworth, R. L. 1982 J. Appl. Phys. 53, 4652.CrossRefGoogle Scholar
Srinivasan, R., Braren, B., Dreyfrus, R. W., Hadel, L. & Seeger, D. E. 1986 J. Opt. Soc. Am. B3, 785.CrossRefGoogle Scholar
Sutcliffe, E. & Srinivasan, R. 1986 J. Appl. Phys. 60, 3315.CrossRefGoogle Scholar
Van Krevelen, D. W. & Hoftyzer, P. J. 1976 Properties of Polymers (Elsevier, Amsterdam) pp. 130136.Google Scholar
Van Stryland, E. W., Wu, Y. Y., Hagan, D. J. & Mansour, K. 1988 J. Opt. Soc. Am. B5, 1980.CrossRefGoogle Scholar
Weast, R. C., ed. 1977 CRC Handbook of Chemistry and Physics, 58th edition (CRC Press, Cleveland): cellulose acetate ablation parameters were estimated from data on p. C-744; silicon dioxide parameters are from p. D-66.Google Scholar
Yablonovitch, E. 1974 Phys. Rev. 10, 1888.CrossRefGoogle Scholar
Yeh, J. T. C. 1986 J. Vac. Sci. Technol. A4, 653.CrossRefGoogle Scholar
Yuen, S. Y., Aggarwal, R. L., Lee, N. & Lax, B. 1979 Opt. Commun. 28, 237.CrossRefGoogle Scholar