Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-13T19:00:55.178Z Has data issue: false hasContentIssue false

Generation of runaway electrons and X rays in an inhomogeneous electric field at high gas pressures

Published online by Cambridge University Press:  28 November 2016

V.F. Tarasenko
Affiliation:
Institute of High Current Electronics, Tomsk 634055, Russia National Research Tomsk State University, Tomsk 634050, Russia National Research Tomsk Polytechnic University, Tomsk 634050, Russia
E.Kh. Baksht
Affiliation:
Institute of High Current Electronics, Tomsk 634055, Russia
D.V. Beloplotov*
Affiliation:
Institute of High Current Electronics, Tomsk 634055, Russia National Research Tomsk State University, Tomsk 634050, Russia
A.G. Burachenko
Affiliation:
Institute of High Current Electronics, Tomsk 634055, Russia National Research Tomsk State University, Tomsk 634050, Russia
M.I. Lomaev
Affiliation:
Institute of High Current Electronics, Tomsk 634055, Russia National Research Tomsk State University, Tomsk 634050, Russia
D.A. Sorokin
Affiliation:
Institute of High Current Electronics, Tomsk 634055, Russia
*
Address correspondence and reprint requests to: D.V. Beloplotov, Institute of High Current Electronics, Russian Academy of Science, Akademichesky Avenue 2/3, Tomsk, 634055, Russia. E-mail: rff.qep.bdim@gmail.com

Abstract

Results of experimental studies of the amplitude–temporal characteristics of a runaway electron (RE) beam, as well as breakdown voltage and discharge current with a picosecond time resolution are presented. The maximum pressure, at which a RE beam is detectable, decreases with increasing the voltage rise time. The waveforms of the discharge and RE beam currents are synchronized with those of the voltage pulses. It is shown that the amplitude–temporal characteristics of the RE beam depend on the designs of the gas-filled diode and cathode, as well as the gap length. The mechanism for the generation of REs in atmospheric-pressure gases is analyzed on the basis of the obtained experimental data.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alekseev, S.B., Orlovskii, V.M. & Tarasenko, V.F. (2003). Electron beams formed in a diode filled with air or nitrogen at atmospheric pressure. Tech. Phys. Lett. 29, 411413.CrossRefGoogle Scholar
Alekseev, S.B., Orlovskii, V.M., Tarasenko, V.F., Tkachev, A.N. & Yakovlenko, S.I. (2005). Electron beam formation in a gas diode at high pressures. Tech. Phys. 50, 16231627.CrossRefGoogle Scholar
Babich, L.P. (2003). High-Energy Phenomena in Electric Discharges in Dense Gases: Theory, Experiment, and Natural Phenomena. Arlington, VA, USA: Published by Futurepast.Google Scholar
Babich, L.P. & Loiko, T.V. (2010). Peculiarities of detecting pulses of runaway electrons and X-rays generated by high-voltage nanosecond discharges in open atmosphere. Plasma Phys. Rep. 36, 263270.CrossRefGoogle Scholar
Babich, L.P. & Loiko, T.V. (2015). Whether abnormal energy electrons are being produced in electric discharges in dense gases? J. Exp. Theor. Phys. Lett. 101, 735739.CrossRefGoogle Scholar
Baksht, E.Kh., Burachenko, A.G., Erofeev, M.V. & Tarasenko, V.F. (2014). Pulse periodic generation of supershort avalanche electron beams and X-ray emission. Plasma Phys. Rep. 40, 404411.CrossRefGoogle Scholar
Baksht, E.Kh., Burachenko, A.G., Kozhevnikov, V.Yu., Kozyrev, A.V., Kostyrya, I.D. & Tarasenko, V.F. (2010). Spectrum of fast electrons in a subnanosecond breakdown of air-filled diodes at atmospheric pressure. J. Phys. D: Appl. Phys. 43, 305201.CrossRefGoogle Scholar
Baksht, E.Kh., Burachenko, A.G., Lomaev, M.I., Rybka, D.V. & Tarasenko, V.F. (2008 a). Generation of runaway electron subnanosecond pulses in nitrogen and helium at a voltage of 25 kV across the gap. Tech. Phys. 53, 9398.CrossRefGoogle Scholar
Baksht, E.Kh., Lomaev, M.I., Rybka, D.V., Sorokin, D.A. & Tarasenko, V.F. (2008 b). Effect of gas pressure on amplitude and duration of electron beam current in a gas–filled diode. Tech. Phys. 53, 15601564.CrossRefGoogle Scholar
Baksht, E.Kh., Tarasenko, V.F., Lomaev, M.I., Rybka, D.V. (2007). Ultrashort electron beams generated on the flat part of a voltage pulse in nitrogen and helium, Tech. Phys. Lett. 33, 373376.CrossRefGoogle Scholar
Balzovsky, E.V., Rybka, D.V. & Tarasenko, V.F. (2015). Features of recording the time profile of single picosecond pulses in the real time mode. Instrum. Exp. Tech. 58, 640645.CrossRefGoogle Scholar
Beloplotov, D.V., Lomaev, M.I., Sorokin, D.A. & Tarasenko, V.F. (2014 a). Iinitial stage of breakdown of a point-plane gap filled with high pressure nitrogen and SF6 . Atmosp. Ocean. Opt. 27, 324328.CrossRefGoogle Scholar
Beloplotov, D.V., Lomaev, M.I., Sorokin, D.A. & Tarasenko, V.F. (2014 b). Diffuse and spark discharges at high overvoltages in high-pressure air, nitrogen, and SF6 . Dev. Appl. Ocean. Eng. 3, 3945.Google Scholar
Burachenko, A.G. & Tarasenko, V.F. (2010). Effect of nitrogen pressure on the energy of runaway electrons generated in a gas diode. Tech. Phys. Lett. 36, 11581194.CrossRefGoogle Scholar
Frankel, S., Highland, V., Sloan, T., van Dyck, O. & Wales, W. (1966). Observation of X-rays from spark discharges in a spark chamber. Nucl. Instrum. Methods 44, 345348.CrossRefGoogle Scholar
Fursey, G.N. (2005). Field Emission in Vacuum Microelectronics. New York, USA: Published by Plenum.Google Scholar
Ivanov, S.N. (2013). The transition of electrons to continuous acceleration mode at subnanosecond pulsed electric breakdown in high-pressure gases. J. Phys. D: Appl. Phys. 46, 285201.CrossRefGoogle Scholar
Kostyrya, I.D., Baksht, E.Kh. & Tarasenko, V.F. (2010). An efficient cathode for generating a super short avalanche electron beams in air at atmospheric pressure. Instrum. Exp. Tech. 53, 545548.CrossRefGoogle Scholar
Kostyrya, I.D., Rybka, D.V. & Tarasenko, V.F. (2012). The amplitude and current pulse duration of a supershort avalanche electron beam in air at atmospheric pressure. Instrum. Exp. Tech. 55, 7277.CrossRefGoogle Scholar
Kostyrya, I.D. & Tarasenko, V.F. (2004). Formation of a volume discharge in air at atmospheric pressure upon application of nanosecond high-voltage pulses. Rus. Phys. J. 47, 13141316.CrossRefGoogle Scholar
Kozyrev, A.V., Kozhevnikov, V.Yu., Vorobyev, M.S., Baksht, E.Kh., Burachenko, A.G., Koval, N.N. & Tarasenko, V.F. (2015). Reconstruction of electron beam energy spectra for vacuum and gas diodes. Laser Part. Beams 33, 183192.CrossRefGoogle Scholar
Levko, D., Krasik, Ya.E. & Tarasenko, V.F. (2012). Present status of runaway electron generation in pressurized gases during nanosecond discharges. Int. Rev. Phys. 6, 165195.Google Scholar
Levko, D., Krasik, Ya.E., Tarasenko, V.F., Rybka, D.V. & Burachenko, A.G. (2013). Temporal and spatial structure of runaway electron beam in air at atmospheric pressure. J. Appl. Phys. 113, 196101.CrossRefGoogle Scholar
Lomaev, M.I., Beloplotov, D.V., Tarasenko, V.F. & Sorokin, D.A. (2015). The breakdown features of a high-voltage nanosecond discharge initiated with runaway electrons at subnanosecond voltage pulse rise time. IEEE Trans. Dielectr. Electr. Insul. 22, 18331840.CrossRefGoogle Scholar
Lomaev, M.I., Rybka, D.V., Sorokin, D.A., Tarasenko, V.F. & Krivonogova, K.Yu. (2009). Radiative characteristics of nitrogen upon excitation by volume discharge initiated by runaway electron beam. Opt. Spectrosc. 107, 3340.CrossRefGoogle Scholar
Mesyats, G.A., Korovin, S.D., Sharypov, K.A., Shpak, V.G., Shunailov, S.A. & Yalandin, M.I. (2006). Dynamics of subnanosecond electron beam formation in gas-filled and vacuum diodes. Tech. Phys. Lett. 32, 1822.CrossRefGoogle Scholar
Mesyats, G.A., Reutova, A.G., Sharypov, K.A., Shpak, V.G., Shunailov, S.A. & Yalandin, M.I. (2011). On the observed energy of runaway electron beams in air. Laser Part. Beams 29, 425435.CrossRefGoogle Scholar
Mesyats, G.A., Sadykova, A.G., Shunailov, S.A., Shpak, V.G. & Yalandin, M.I. (2013). Control and stabilization of runaway electron emission at the delay stage of pulsed breakdown in an overvolted atmospheric gap. IEEE Trans. Plasma Sci. 41, 28632870.CrossRefGoogle Scholar
Mesyats, G.A., Shpak, V.G., Shunailov, S.A. & Yalandin, M.I. (2008). Electron source and acceleration regime of a picosecond electron beam in a gas-filled diode with inhomogeneous field. Tech. Phys. Lett. 34, 169173.CrossRefGoogle Scholar
Mesyats, G.A., Yalandin, M.I., Reutova, A.G., Sharypov, K.A., Shpak, V.G. & Shunailov, S.A. (2012). Picosecond runaway electron beams in air. Plasma Phys. Rep. 38, 2945.CrossRefGoogle Scholar
Rybka, D.V., Tarasenko, V.F., Burachenko, A.G. & Balzovskii, E.V. (2012). The temporal structure of a runaway electron beam generated in air at atmospheric pressure. Tech. Phys. Lett. 38, 657660.CrossRefGoogle Scholar
Shao, T., Tarasenko, V.F., Zhang, Ch., Baksht, E.Kh., Yan, P. & Shut'ko, Yu.V. (2012). Repetitive nanosecond-pulse discharge in a highly nonuniform electric field in atmospheric air: X-ray emission and runaway electron generation. Laser Part. Beams 30, 369378.CrossRefGoogle Scholar
Shao, T., Tarasenko, V.F., Zhang, Ch., Burachenko, A.G., Rybka, D.V., Kostyrya, I.D., Lomaev, M.I., Baksht, E.Kh. & Yan, P. (2013). Application of dynamic displacement current for diagnostics of subnanosecond breakdowns in an inhomogeneous electric field. Rev. Sci. Instrum. 84, 053506.CrossRefGoogle Scholar
Shao, T., Tarasenko, V.F., Yang, W., Beloplotov, D.V., Zhang, Ch., Lomaev, M.I., Yan, P. & Sorokin, D.A. (2014). Spots on electrodes and images of a gap during pulsed discharges in an inhomogeneous electric field at elevated pressures of air, nitrogen and argon. Plasma Sources Sci. Technol. 23, 054018.CrossRefGoogle Scholar
Shao, T., Zhang, Ch., Niu, Z., Yan, P., Tarasenko, V.F., Baksht, E.Kh., Kostyrya, I.D. & Shut'ko, Yu.V. (2011). Runaway electron preionized diffuse discharges in atmospheric pressure air with a point-to-plane gap in repetitive pulsed mode. J. Appl. Phys. 109, 083306.CrossRefGoogle Scholar
Sharypov, K.A., Ul'masculov, M.R., Shpak, V.G., Shunailov, S.A., Yalandin, M.I., Mesyats, G.A., & Kolomiets, M.D. (2014). Current waveform reconstruction from an explosively emissive cathode at a subnanosecond voltage front. Rev. Sci. Instrum. 85, 125104.CrossRefGoogle Scholar
Stankevich, Yu.L., & Kalinin, V.G. (1967). Fast electrons and X-ray radiation during the initial stage of growth of a pulsed spark. Sov. Phys. – Dokl. 12, 10421043.Google Scholar
Tabata, T. & Ito, R. (1975). A generalized empirical equation for the transmission coefficient of electrons. Nucl. Instrum. Methods 127, 429434.CrossRefGoogle Scholar
Tarasenko, V.F. (2011). Parameters of a supershort avalanche electron beam generated in atmospheric-pressure air. Plasma Phys. Rep. 37, 409421.CrossRefGoogle Scholar
Tarasenko, V.F. (Eds). (2014). Runaway Electron Preionized Diffuse Discharges. New York, USA: Published by Nova Science Publishers, Inc.Google Scholar
Tarasenko, V.F., Baksht, E.Kh., Burachenko, A.G. & Erofeev, M.V. (2013 b). Formation of diffuse and spark discharges in non-uniform electric field in elevated pressure gases. High Volt. Eng. 39, 21052111.Google Scholar
Tarasenko, V.F., Baksht, E.Kh., Burachenko, A.G., Kostyrya, I.D., Lomaev, M.I., Petin, V.K., Rybka, D.V. & Shlyakhtun, S.V. (2008 c). Energy distribution of runaway electrons generated by a nanosecond discharge in atmospheric-pressure air. Plasma Phys. Rep. 34, 10281036.CrossRefGoogle Scholar
Tarasenko, V.F., Baksht, E.Kh., Burachenko, A.G., Kostyrya, I.D., Lomaev, M.I. & Rybka, D.V. (2010 a). High-pressure runaway-electron – preionized diffuse discharges in a nonuniform electric field. Tech. Phys. 55, 210218.CrossRefGoogle Scholar
Tarasenko, V.F., Baksht, E.Kh., Burachenko, A.G., Kostyrya, I.D., Lomaev, M.I. & Rybka, D.V. (2008 a). Generation of supershort avalanche electron beams and formation of diffuse discharges in different gases at high pressure. Plasma Dev. Oper. 16, 267298.CrossRefGoogle Scholar
Tarasenko, V.F., Baksht, E.Kh., Burachenko, A.G., Kostyrya, I.D., Lomaev, M.I. & Rybka, D.V. (2008b). Supershort avalanche electron beam generation in gases. Laser. Part. Beams 26, 605617.CrossRefGoogle Scholar
Tarasenko, V.F., Baksht, E.Kh., Burachenko, A.G., Kostyrya, I.D. & Rybka, D.V. (2013 a). Energy of electrons generated during a subnanosecond breakdown in atmospheric-pressure air. Plasma Phys. Rep. 39, 592599.CrossRefGoogle Scholar
Tarasenko, V.F., Baksht, E.Kh., Burachenko, A.G., Lomaev, M.I., Sorokin, D.A. & Shut'ko, Yu.V. (2010 b). On the initiation of a spark discharge upon the breakdown of nitrogen and air in a nonuniform electric field. Tech. Phys. 55, 904907.CrossRefGoogle Scholar
Tarasenko, V.F., Beloplotov, D.V. & Lomaev, M.I. (2015). Dynamics of ionization processes in high-pressure nitrogen, air, and SF6 during a subnanosecond breakdown initiated by runaway electrons. Plasma Phys. Rep. 41, 832846.CrossRefGoogle Scholar
Tarasenko, V.F., Burachenko, A.G., Baksht, E.Kh., Kostyrya, I.D., Lomaev, M.I. & Rybka, D.V. (2009). A coaxial chopping gap filled with air at atmospheric pressure with a pulse decay time ≤100 ps. Instrum. Exp. Tech. 52, 366369.CrossRefGoogle Scholar
Tarasenko, V.F., Erofeev, M.V., Lomaev, M.I., Sorokin, D.A. & Rybka, D.V. (2012 a). Two component structure of the current pulse of runaway electron beam generated during electron breakdown of elevated pressure nitrogen. Plasma Phys. Rep. 38, 922929.CrossRefGoogle Scholar
Tarasenko, V.F., Orlovskii, V.M. & Shunailov, S.A. (2003 a). Forming of an electron beam and a volume discharge in air at atmospheric pressure. Rus. Phys. J. 46, 325327.CrossRefGoogle Scholar
Tarasenko, V.F., Rybka, D.V., Burachenko, A.G., Lomaev, M.I. & Balzovsky, E.V. (2012 b). Measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air. Rev. Sci. Instrum. 83, 086106.CrossRefGoogle ScholarPubMed
Tarasenko, V.F., Shpak, V.G., Shunailov, S.A. & Kostyrya, I.D. (2005). Supershort electron beam from air filled diode at atmospheric pressure. Laser Part. Beams 23, 545551.CrossRefGoogle Scholar
Tarasenko, V.F., Yakovlenko, S.I., Orlovskii, V.M., Tkachev, A.N. & Shunailov, C.A. (2003 b). Production of powerful electron beams in dense gases. JETP Lett. 77, 611615.CrossRefGoogle Scholar
Tarasova, L.V. & Khudyakova, L.N. (1969). X-Rays from pulsed discharges in air. Sov. Phys. Tech. Phys. 14, 11481150.Google Scholar
Tarasova, L.V., Khudyakova, L.N., Loiko, T.V. & Tsukerman, V.A. (1974). The fast electrons and X-ray radiation of nanosecond pulsed discharges in gases under 0.1–760 Torr. J. Tech. Phys. 44, 564568.Google Scholar
Wilson, C.T.R. (1924). The acceleration of β-particles in strong electric fields such as those of thunderclouds. Proc. Cambr. Philos. Soc. 22, 534538.CrossRefGoogle Scholar
Yakovlenko, S.I. (Eds). (2007). Beams of Runaway Electrons and Discharges in Dense Gases, Based on a Wave of Multiplication of Background Electrons. Moscow, Russia: Published by Nauka. [in Russian].Google Scholar
Yalandin, M.I., Reutova, A.G., Sharupov, K.A., Shpak, V.G., Shunailov, S.A., Ul'maculov, M.R., Rostov, V.V. & Mesyats, G.A. (2010). Stability of injection of a subnanosecond high-current electron beam and dynamic effects within its rise time. IEEE Trans. Plasma Sci. 38, 25592564.CrossRefGoogle Scholar
Zagulov, F.Ya., Kotov, A.S., Shpak, V.G., Yurike, Ya. Ya. & Yalandin, M.I. (1989). RADAN – small-size pulse-periodic high-current accelerator of electrons. Prib. Tekh. Eksp. 2, 146149.Google Scholar
Zhang, Ch., Tarasenko, V., Gu, J., Baksht, E., Wang, R., Yan, P. & Shao, T. (2015). A comparison between spectra of runaway electron beams in SF6 and air. Phys. Plasmas 22, 123516.CrossRefGoogle Scholar
Zhang, Ch., Tarasenko, V.F., Shao, T., Baksht, E.Kh., Burachenko, A.G., Yan, P. & Kostyray, I.D. (2013). Effect of cathode materials on the generation of runaway electron beams and X-rays in atmospheric pressure air. Laser Part. Beams 31, 353364.CrossRefGoogle Scholar
Zhang, Ch., Tarasenko, V.F., Shao, T., Beloplotov, D.V., Lomaev, M.I., Sorokin, D.A. & Yan, P. (2014). Generation of supershort avalanche electron beams in SF6. Laser Part. Beams 32, 331341.CrossRefGoogle Scholar