Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-01T12:50:25.027Z Has data issue: false hasContentIssue false

Laser second harmonic generation in a rippled density plasma in the presence of azimuthal magnetic field

Published online by Cambridge University Press:  08 December 2009

U. Verma*
Affiliation:
Center for Energy Studies, Indian Institute of TechnologyDelhi, New Delhi, India
A.K. Sharma
Affiliation:
Center for Energy Studies, Indian Institute of TechnologyDelhi, New Delhi, India
*
Address correspondence and reprint requests to: U. Verma, Center for Energy Studies, Indian Institute of Technology Delhi, New Delhi-110016, India. E-mail: updeshv@gmail.com

Abstract

The strong azimuthal magnetic fields, observed in many laser plasma experiments, are shown to be a potential source of second harmonic generation. The laser imparts oscillatory velocity to electrons and exerts a longitudinal pondromotive force on them. This force in conjunction with the azimuthal magnetic field and density ripple produces a second harmonic current with significant transverse component. The latter produces resonant second harmonic radiation.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abdelli, S.Khalfaoui, T. & Ghohrini, D. (1992). Laser-plasma interaction properties through second harmonic generation. Laser Part. Beams 10, 629637.CrossRefGoogle Scholar
Centini, M., Roppo, V., Fazio, E., Pettazzi, F., Sibilia, C., Haus, J.W., Foreman, J.V., Akozbek, N., Bloemer, M.J. & Scalora, M. (2008). Inhibition of linear absorption in opaque materials using phase-locked harmonic generation. Phys. Rev. Lett. 101, 113905.Google Scholar
Chen, T.J., Zitter, R.N. & Tao, R. (1995). Second-harmonic generation of nonlinear optical crystals in vacuum-ultraviolet and X-ray regions. Phys. Rev. A 51, 706711.Google Scholar
Dahiya, D., Sajal, V. & Sharma, A.K. (2007). Phase-matched second and third-harmonic generation in plasmas with density ripple. Phys. Plasmas 14, 123104.Google Scholar
Dromey, B., Bellei, C., Carroll, D.C., Clarke, R.J., Green, J.S., Kar, S., Kneip, S., Markey, K., Nagel, S.R., Willingale, L., McKenna, P., Neely, D., Najmudin, Z., Krushelnick, K., Norreys, P.A. & Zepf, M. (2009). Third harmonic order imaging as a focal spot diagnostic for high intensity laser-solid interactions. Laser Part. Beams 27, 243248.Google Scholar
Esarey, E., Ting, A., Sprangle, P., Umstadter, D. & Liu, X. (1993). Nonlinear analysis of relativistic harmonic generation by intense lasers in plasmas. IEEE Trans. Plasma Sci. 21, 95104.CrossRefGoogle Scholar
Franken, P.A., Hill, A.E., Peters, C.W. & Weinreich, G. (1961). Generation of optical harmonics. Phys. Rev. Lett. 7, 118.Google Scholar
Giulietti, D., Banfi, G.P., Deha, I., Giulietti, A., Lucchesi, M., Nocera, L. & Ze Zun, Chen. (1988). Second harmonic generation in underdense plasma. Laser Part. Beams 6, 141147.CrossRefGoogle Scholar
Gupta, M.K., Sharma, R.P. & Mahmoud, S.T. (2007). Generation of plasma wave and third harmonic generation at ultra relativistic laser power. Laser Part. Beams 25, 211218.CrossRefGoogle Scholar
Hafeez, S., Shaikh, N.M. & Baig, M.A. (2008). Spectroscopic studies of Ca plasma generated by the fundamental, second, and third harmonics of a Nd:YAG laser. Laser Part. Beams 26, 4150.CrossRefGoogle Scholar
Huillier, A.L. & Balcou, P. (1993). Higher order harmonic generation in rare gases with a 1-ps 1053–nm laser. Phys. Rev. Lett. 70, 1935.Google Scholar
Kaur, S. & Sharma, A.K. (2009). Self focusing of a laser pulse in plasma with periodic density ripple', Laser and Particle Beams, vol. 27, no. 2, pp. 193199.CrossRefGoogle Scholar
Kaur, S., Sharma, A.K. &. Salih, H.A. (2009). Resonant second harmonic generation of a gaussian electromagnetic beam in a collisional magnetoplasma. Phys. Plasmas 16, 042509.Google Scholar
Krushelnick, K., Ting, A., Burris, H.R., Fisher, A., Manka, C. & Esarey, E. (1995). Second harmonic generation of stimulated raman scattered light in underdense plasmas. Phys. Rev. Lett. 75, 3681.Google Scholar
Liu, X., Umstadter, D., Esarey, E. & Ting, A. (1993). Harmonic generation by an intense laser pulse in neutral and ionized gases. IEEE Trans. Plasma Sci. 21, 90.Google Scholar
Liu, X., Umstadter, D., Esarey, E. & Ting, A. (1993). Harmonic generation by an intense laser pulse in neutral and ionized gases. IEEE Trans. Plasma Sci. 21, 9093.CrossRefGoogle Scholar
Liu, C.S. & Tripathi, V.K. (1996). Second-harmonic generation of Raman scattered light in a plasma channel. Phys. Rev. E 54, 40984100.Google Scholar
Malka, V., Modena, A., Najmudin, Z., Dangor, A.E., Clayton, C.E., Marsh, K.A., Joshi, C., Danson, C., Neely, D. & Walsh, N. (1997). Second harmonic generation and its interaction with relativistic plasma wave driven by forward Raman instability in underdense plasmas. Phys. Plasmas 4, 11271131.Google Scholar
Merdji, H., Guizard, S., Martin, P., Petite, G., Que're', F., Carre', B., Hergott, J.F., De' roff, L., Salie'res, P., Gobert, O., Meynadier, P. & Perdrix, M. (2000). Ultrafast electron relaxation measurements on a-SiO2 using high-order harmonics generation. Laser Part. Beams 18, 489494.Google Scholar
Mironov, S., Lozhkarev, V., Ginzburg, V. & Khazanov, E. (2009). High-efficiency second-harmonic generation of superintense ultrashort laser pulse. Appl. Opt. 48, 2051.CrossRefGoogle Scholar
Mori, W.B., Decker, C.D. & Leemans, W.P. (1993). Relativistic harmonic content of nonlinear electromagnetic waves in underdense plasmas. IEEE Trans. Plasma Sci. 21, 110.Google Scholar
Ozaki, T., Bom, L.B.E. & Ganeev, R.A. (2008). Extending the capabilities of ablation harmonics to shorter wavelengths and higher intensity. Laser Part. Beams 26, 235240.Google Scholar
Ozaki, T., Bom, L.B.E., Ganeev, R., Kieffer, J.C., Suzuki, M. & Kuroda, H. (2007). Intense harmonic generation from silver ablation. Laser Part. Beams 25, 321325.Google Scholar
Panwar, A. & Sharma, A.K. (2009). Self-phase modulation of a laser in self created plasma channel. Laser Part. Beams 27, 249253CrossRefGoogle Scholar
Parashar, J. & Sharma, A.K. (1998). Second-harmonic generation by an obliquely incident laser on a vacuum-plasma interface. Europhys. Lett. 41, 389394.Google Scholar
Prasad, R., Singh, R. & Tripathi, V.K. (2009). Effect of axial magnetic field and ion space charge on laser beat wave acceleration and surfatron acceleration of electrons. Laser part. Beams 27, 259264.Google Scholar
Ramakrishna, S.A. (2005). Physics of negative refractive index materials. Rep. Prog. Phys. 68, 449521.Google Scholar
Salih, H.A., Tripathi, V.K. & Pandey, B.K. (2003). Second-harmonic generation of a Gaussian laser beam in a self created magnetized plasma channel. IEEE Trans. Plasma Sci. 31, 324.Google Scholar
Schifano, E., Baton, S.D., Biancalana, V., Giuletti, A., Giuletti, D., Labaune, C. & Renard, N. (1994). Second harmonic emission from laser-preformed plasmas as a diagnostic for filamentation in various interaction condition. Laser Part. Beams 12, 435–144.Google Scholar
Sharma, R.P. & Sharma, P. (2009). Effect of laser beam filamentation on second harmonic spectrum in laser plasma interaction. Laser Part. Beams 27, 157169.CrossRefGoogle Scholar
Shen, Y.R. (1989). Surface properties probed by second-harmonic and sum-frequency generation. Nat. 337, 519.Google Scholar
Upadhyay, A. & Tripahi, V.K. (2005). Second harmonic generation in a laser channel. J. Plasma Phys. 71, 359366.Google Scholar
Verma, U. & Sharma, A.K. (2009). Effect of laser self defocusing on third harmonic generation in a tunnel ionizing gas. Phys. Plasmas 16, 013101.Google Scholar
Verma, U. & Sharma, A.K. (2009). Effect of self focusing on the prolongation laser produced plasma channel. Laser Part. Beams 27, 3339.Google Scholar
Wang, Z., Luo, Y., Peng, L., Huangfu, J., Jiang, T., Wang, D., Chen, H. & Ran, L. (2009). Second-harmonic generation and spectrum modulation by an active nonlinear metamaterial. Appl. Phys. Lett. 94, 134102.Google Scholar
Yadav, S. & Tripathi, V.K. (2008). Second harmonic stimulated Compton scattering of laser in plasma. Phys. Sci. 77, 015501.CrossRefGoogle Scholar
Yadav, S., Kaur, S. & Tripathi, V.K. (2008). Stimulated brillouin scattering at the second harmonic of a laser in two-ion-species plasma. Phys. Sci. 78, 065501.Google Scholar
Zens, G., Shen, B., Yu, W. & Xu, Z. (1996). Relativistic harmonic generation excited in the ultrashort laser pulse regime. Phys. Plasmas 3, 4220.Google Scholar