Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-06-08T02:06:04.437Z Has data issue: false hasContentIssue false

Picosecond 14.7 nm interferometry of high intensity laser-produced plasmas

Published online by Cambridge University Press:  02 June 2005

JAMES DUNN
Affiliation:
Lawrence Livermore National Laboratory Livermore, Livermore, CA
JORGE FILEVICH
Affiliation:
NSF ERC for Extreme Ultraviolet Science and Technology and Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO
RAYMOND F. SMITH
Affiliation:
Lawrence Livermore National Laboratory Livermore, Livermore, CA
STEPHEN J. MOON
Affiliation:
Lawrence Livermore National Laboratory Livermore, Livermore, CA
JORGE J. ROCCA
Affiliation:
NSF ERC for Extreme Ultraviolet Science and Technology and Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO
ROISIN KEENAN
Affiliation:
Lawrence Livermore National Laboratory Livermore, Livermore, CA
JOSEPH NILSEN
Affiliation:
Lawrence Livermore National Laboratory Livermore, Livermore, CA
VYACHESLAV N. SHLYAPTSEV
Affiliation:
Department of Applied Science, University of California Davis-Livermore, Livermore, CA
JAMES R. HUNTER
Affiliation:
Lawrence Livermore National Laboratory Livermore, Livermore, CA
ANDREW NG
Affiliation:
Lawrence Livermore National Laboratory Livermore, Livermore, CA University of British Columbia, Vancouver
MARIO C. MARCONI
Affiliation:
NSF ERC for Extreme Ultraviolet Science and Technology and Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, CO Department of Physics, University of Buenos Aires, Argentina

Abstract

We have developed a compact, 14.7 nm, sub-5 ps X-ray laser source at Lawrence Livermore National Laboratory (LLNL) together with a Mach-Zehnder type diffraction grating interferometer built at Colorado State University for probing dense, high intensity laser-produced plasmas. The short wavelength and pulse length of the probe reduces refraction, absorption effects within the plasma and minimizes plasma motion blurring. This unique diagnostic capability gives precise two-dimensional (2D) density profile snapshots and is generating new data for rapidly evolving laser-heated plasmas. A review of the results from dense, mm-scale line focus plasma experiments will be described with detailed comparisons to hydrodynamic simulations.

Type
Research Article
Copyright
2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alpher, R.A. & White, D.R. (1965). Optical interferometry. In Plasma Diagnostics Techniques (Huddlestone, R.H. and Leonard, S.L., Eds.), pp. 431476. New York: Academic Press.Google Scholar
Attwood, D.T., Sweeney, D.G., Auerbach, J.M. & Lee, P.H.Y. (1978). Phys. Rev. Lett. 40, 184187.CrossRefGoogle Scholar
Da Silva, L.B., Barbee_Jr., T.W., Cauble, R., Celliers, P., Ciarlo, D., Libby, S., London, R.A., Matthews, D., Mrowka, S., Moreno, J.C., Ress, D., Trebes, J.E., Wan, A.S. & Weber, F. (1995). Phys. Rev. Lett. 74, 39913994.Google Scholar
Dunn, J., Li, Y., Osterheld, A.L., Nilsen, J., Hunter, J.R. & Shlyaptsev, V.N. (2000). Phys. Rev. Lett. 84, 48344837.CrossRefGoogle Scholar
Dunn, J., Smith, R.F., Shepherd, R., Booth, R., Nilsen, J., Hunter, J.R. & Shlyaptsev, V.N. (2003). Soft X-ray Lasers and Applications V. (Fill, E.E. and Suckewer, S., Eds.) SPIE Int. Soc. Opt. Eng. Proc, vol. 5197, 5159.Google Scholar
Filevich, J., Kanizay, K., Marconi, M.C., Chilla, J.L.A. & Rocca, J.J. (2000). Opt. Lett. 25, 356357.Google Scholar
Filevich, J., Rocca, J.J., Marconi, M.C., Smith, R.F., Dunn, J., Keenan, R., Hunter, J.R., Moon, S.J., Nilsen, J., Ng, A. & Shlyaptsev, V.N. (2004). Appl. Opt. 49, 39383946.Google Scholar
Filevich, J., Rocca, J.J., Marconi, M.C., Moon, S.J., Nilsen, J., Scofield, J.H., Dunn, J., Smith, R.F., Keenan, R., Hunter, J.R., & Shlyaptsev, V.N. (2005). Observation of a multiply ionized plasma with index of refraction greater than one. Phys. Rev. Lett. 95, 03505-1.Google Scholar
Nilsen, J. & Scofield, J.H. (2004). Plasmas with an index of refraction greater than 1. Opt. Lett. 29(22), 26772679.CrossRefGoogle Scholar
Rocca, J.J., Moreno, C.H., Marconi, M.C. & Kanizay, K. (1999). Opt. Lett. 24, 420422.Google Scholar
Smith, R.F., Dunn, J., Nilsen, J., Shlyaptsev, V.N., Moon, S., Filevich, J., Rocca, J.J., Marconi, M.C., Hunter, J.R. & Barbee_Jr., T.W. (2002). Phys. Rev. Lett. 89, 065004.CrossRefGoogle Scholar
Smith, R.F., Dunn, J., Hunter, J.R., Nilsen, J., Hubert, S., Jacquemot, S., Remond, C., Marmoret, R., Fajardo, M., Zeitoun, P., Vanbostal, L., Lewis, C.L.S., Ravet, M.-F. & Delmotte, F. (2003). Opt. Lett. 28, 22612263.Google Scholar
Zimmerman, G.B. & Kruer, W.L. (1975). Comments Plasma Phys. Controlled Fusion 2, 51.Google Scholar