Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-10T23:43:44.096Z Has data issue: false hasContentIssue false

Inverse Scattering Problem for the Maxwell’s Equations

Published online by Cambridge University Press:  28 January 2013

Get access

Abstract

Inverse scattering problem is discussed for the Maxwell’s equations. A reduction of the Maxwell’s system to a new Fredholm second-kind integral equation with a scalar weakly singular kernel is given for electromagnetic (EM) wave scattering. This equation allows one to derive a formula for the scattering amplitude in which only a scalar function is present. If this function is small (an assumption that validates a Born-type approximation), then formulas for the solution to the inverse problem are obtained from the scattering data: the complex permittivity ϵ′(x) in a bounded region D ⊂ R3 is found from the scattering amplitude A(β,α,k) known for a fixed k = ω √ϵ0μ0 >0 and all β,α ∈ S2, where S2 is the unit sphere in R3, ϵ0 and μ0 are constant permittivity and magnetic permeability in the exterior region D′ = R3\D. The novel points in this paper include: i) A reduction of the inverse problem for vector EM waves to a vector integral equation with scalar kernel without any symmetry assumptions on the scatterer, ii) A derivation of the scalar integral equation of the first kind for solving the inverse scattering problem, and iii) Presenting formulas for solving this scalar integral equation. The problem of solving this integral equation is an ill-posed one. A method for a stable solution of this problem is given.

Type
Research Article
Copyright
© EDP Sciences, 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

L. Landau, E. Lifschitz, L. Pitaevskii. Electrodynamics of continuous medium. Pergamon Press, Oxford, 1984.
L. Tsang, J. Kong, K.Ding. Scattering of electromagnetic waves : Theories and applications. Wiley, New York, 2000.
C. Müller. Grundprobleme der mathematischen Theorie electromagnetischer Schwingungen. Springer-Verlag, Berlin, 1957.
A. G. Ramm. Wave scattering by small bodies of arbitrary shapes. World Sci. Publishers, Singapore, 2005.
A. G. Ramm. Scattering by obstacles. D.Reidel, Dordrecht, 1986.
A. G. Ramm. Inverse problems. Springer, New York, 2005.
Ramm, A. G.. Many-body wave scattering by small bodies and applications. J. Math. Phys., 48, No. 10, (2007), 103511. CrossRefGoogle Scholar
Ramm, A. G.. Electromagnetic wave scattering by small bodies. Phys. Lett. A, 372/23, (2008), 42984306. CrossRefGoogle Scholar
Ramm, A. G.. Wave scattering by many small particles embedded in a medium. Phys. Lett. A, 372/17, (2008), 30643070. CrossRefGoogle Scholar
Ramm, A. G.. Wave scattering by many small bodies and creating materials with a desired refraction coefficient. Afrika Matematika, 22, No. 1, (2011), 3355. CrossRefGoogle Scholar
Ramm, A. G.. Inversion of the Radon transform with incomplete data. Math. Methods in the Appl.Sci., 15, No. 3, (1992), 159166. CrossRefGoogle Scholar
A. G. Ramm, A.I. Katsevich. The Radon transform and local tomography. CRC Press, Boca Raton, 1996.