Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-06-08T22:06:10.027Z Has data issue: false hasContentIssue false

A comparison of the fenites at the Chilwa Island and Kangankunde carbonatite complexes, Malawi

Published online by Cambridge University Press:  09 December 2022

Emma Dowman*
Affiliation:
School of Geography, Geology & Environment, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK Camborne School of Mines, University of Exeter, Cornwall Campus, Penryn, Cornwall TR10 9FE, UK Department of Mineralogy, Natural History Museum, Cromwell Road, London SW7 5BD, UK
Frances Wall
Affiliation:
Camborne School of Mines, University of Exeter, Cornwall Campus, Penryn, Cornwall TR10 9FE, UK Department of Mineralogy, Natural History Museum, Cromwell Road, London SW7 5BD, UK
Peter Treloar
Affiliation:
School of Geography, Geology & Environment, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, UK
*
*Author for correspondence: Emma Dowman, Email: emma@abdm.co.uk

Abstract

Carbonatites are igneous carbonate rocks. They are the main source of the rare earth elements (REE) that are essential in low carbon and high technology applications. Exploration targeting and mine planning would both benefit from a better understanding of the processes that create the almost ubiquitous alkaline and REE-bearing metasomatic aureoles in the surrounding country rocks.

Using scanning electron microscopy and whole-rock geochemistry, we investigated the composition and mineralogy of the fenite aureoles developed around the REE-poor Chilwa Island carbonatite and the REE-rich Kangankunde carbonatite, which intrude similar country rocks in the Chilwa Alkaline Province of Southern Malawi. Although common characteristics and trends in their mineralogy and composition may be typical of fenites in general, there are significant differences in their petrography and petrogenesis. For example, the mineralogically diverse breccia at Kangankunde contrasts with the intensely altered potassic breccia of Chilwa Island. This might be caused by differing sequences of fluids expelled from the carbonatites into the aureoles. The main REE-bearing mineral in fenite is different at each complex, and reflects the characteristic REE-bearing mineral of the main carbonatite: fluorapatite at Chilwa Island; and monazite at Kangankunde. Each fenite has distinctive mineral assemblages, in which the relative abundance of the REE-bearing minerals appears to be determined by the mineralogy of their respective host carbonatites.

At both localities, the REE minerals in fenite are less enriched in lanthanum and cerium than their equivalents in carbonatite, a characteristic that we attribute to REE fractionation within fluids in the aureole.

Identifying the mineral assemblages present in fenite and understanding the sequence of alkaline and mineralising fluid events could therefore be useful in predicting whether a fenite is associated with a REE-rich carbonatite. Detailed studies of other aureoles would be required to assess the reliability of these characteristics.

Type
Article
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Ian Coulson

References

Andersen, T. (1989) Carbonatite-related contact metasomatism in the Fen complex, Norway: effects and petrogenetic implications. Mineralogical Magazine, 53, 395414.CrossRefGoogle Scholar
Andrade, F.R.D., Möller, P., Lüders, V., Dulski, P. and Gilg, H.A. (1999) Hydrothermal rare earth elements mineralization in the Barra do Itapirapua carbonatite, southern Brazil: Behaviour of selected trace elements and stable isotopes (C, O). Chemical Geology, 155, 91113.CrossRefGoogle Scholar
Anenburg, M., Mavrogenes, J.A., Frigo, C. and Wall, F. (2020) Rare earth element mobility in and around carbonatites controlled by sodium, potassium, and silica. Science Advances, 6, doi:10.1126/sciadv.abb6570CrossRefGoogle ScholarPubMed
Anenburg, M., Broom-Fendley, S. and Chen, W. (2022) Formation of rare earth deposits in carbonatites. Elements, 17, 327332.CrossRefGoogle Scholar
Arzamastev, A., Arzmasteva, L. and Zaraiskii, G. (2011) Contact interaction of agnatic magmas with basement gneisses: an example of the Khibina and Lovozero massifs. Petrology, 19, 115139.Google Scholar
Bailey, D. (1977) Lithospheric control of continental rift magmatism. Geological Society of London Journal, 133, 103106.CrossRefGoogle Scholar
Bardina, N. and Popov, V. (1994) Fenites: systematics, formation conditions and significance for crustal magma genesis. Zapiski Vseross. Mineral. Obshcheswa, 113, 485497.Google Scholar
Broom-Fendley, S., Wall, F., Brady, A., Gunn, A., Chenery, S. and Dawes, W. (2013) Carbonatite-hosted, late-stage apatite as a potential source of heavy rare earth elements? Mineral Deposit Research for a High-Tech World. Proceedings of the 12th Biennial SGA Meeting. Uppsala meeting, Sweden, August 2013.Google Scholar
Broom-Fendley, S., Styles, M.T., Appleton, J.D., Gunn, G. and Wall, F. (2016) Evidence for dissolution-reprecipitation of apatite and preferential LREE mobility in carbonatite-derived late-stage hydrothermal processes. American Mineralogist, 101, 596611.CrossRefGoogle Scholar
Broom-Fendley, S., Wall, F., Spiro, B. and Ullmann, C. V. (2017) Deducing the source and composition of rare earth mineralising fluids in carbonatites: insights from isotopic (C, O, 87Sr/86Sr) data from Kangankunde, Malawi. Contributions to Mineralogy and Petrology, 172, 96.CrossRefGoogle Scholar
Broom-Fendley, S., Elliott, H.A.L., Beard, C., Wall, F., Armitage, P., Brady, A., Deady, E. and Dawes, W. (2021a) Enrichment of heavy REE and Th in carbonatite-derived fenite breccia. Geological Magazine, 158, 2025-2041.CrossRefGoogle Scholar
Broom-Fendley, S., Siegfried, P.R., Wall, F., O'Neill, M., Brooker, R., Fallon, E., Pickles, J. and Banks, D. (2021b) The origin and composition of carbonatite-derived carbonate-bearing fluorapatite deposits. Mineralium Deposita, 56, 863884.CrossRefGoogle Scholar
Brown, T.J., Idoine, N.E., Raycraft, R.E., Shaw, A.R., Deady, A.E., Hobbs, S.F. and Bide, T. (2017) World Mineral Production 2011–2015. British Geological Survey, Keyworth, UK, 57pp.Google Scholar
Buckley, H.A. and Woolley, A.R. (1990) Carbonates of the magnesite–siderite series from four carbonatite complexes. Mineralogical Magazine, 54, 413418.CrossRefGoogle Scholar
Bühn, B. and Rankin, A. (1999) Composition of natural, volatile-rich Na-Ca-REE-Sr carbonatitic fluids trapped in fluid inclusions. Geochimica et Cosmochimica Acta, 63, 37813797.CrossRefGoogle Scholar
Bühn, B., Rankin, A.H., Radtke, M., Haller, M. and Knoechel, A. (1999) Burbankite, a (Sr, REE, Na, Ca)-carbonate in fluid inclusions from carbonatite-derived fluids; identification and characterization using laser Raman spectroscopy, SEM-EDX, and synchrotron micro-XRF analysis. American Mineralogist, 84, 11171125.CrossRefGoogle Scholar
Bühn, B., Wall, F. and Le Bas, M.J. (2001) Rare-earth systematics of carbonatitic fluorapatites, and their significance for carbonatite magma evolution. Contributions to Mineralogy and Petrology, 141, 572591.CrossRefGoogle Scholar
Cahen, L. and Snelling, N. (1966) The Geochronology of Equatorial Africa. North-Holland Publishing Company, Amsterdam, 195pp.Google Scholar
Candela, P.A. (1997) A review of shallow, ore-related granites: Textures, volatiles, and ore metals. Journal of Petrology, 38, 16191633.CrossRefGoogle Scholar
Candela, P. and Bevin, P. (1995) Physical and chemical magmatic controls on the size of magmatic-hydrothermal ore deposits. Pp. 237 in: Giant Ore Deposits-II (Clark, A., editor). QMinEx Associates and Queen's University, Kingston, Ontario, Canada.Google Scholar
Carmody, L. (2012) Geochemical Characteristics of Carbonatite-Related Volcanism and Sub-Volcanic Metasomatism at Oldoinyo Lengai, Tanzania. PhD thesis, University College London, UK.Google Scholar
Castor, S.B. (2008) The Mountain Pass rare-earth carbonatite and associated ultrapotassic rocks, California. The Canadian Mineralogist, 46, 779806.CrossRefGoogle Scholar
Chakhmouradian, A. and Reguir, E. (2013) REE partitioning between crystals and melts: beyond the test tube. 125th Anniversary of GSA. Denver meeting, October 2013.Google Scholar
Chakhmouradian, A.R. and Wall, F. (2012) Rare earth elements: Minerals, mines, magnets (and more). Elements, 8, 333340.CrossRefGoogle Scholar
Chakhmouradian, A.R., Reguir, E.P., Zaitsev, A.N., Couëslan, C., Xu, C., Kynický, J., Mumin, A.H. and Yang, P. (2017) Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance. Lithos, 274, 188213.CrossRefGoogle Scholar
Chebotarev, D., Doroshkevich, A., Klemd, R. and Karmanov, N. (2017) Evolution of Nb-mineralization in the Chuktukon carbonatite massif, Chadobets upland (Krasnoyarsk Territory, Russia). Periodico di Mineralogia, 86, 99118.Google Scholar
David, F. and Walker, L. (1990) Ion microprobe study of intragrain micropermeability in alkali feldspars. Contributions to Mineralogy and Petrology, 106, 124-128.CrossRefGoogle Scholar
do Cabo, V.N., Wall, F., Sitnikova, M.A., Ellmies, R., Henjes-Kunst, F., Gerdes, A. and Downes, H. (2011) Mid and heavy REE in carbonatites at Lofdal, Namibia. Goldschmidt Conference Abstracts. Prague Meeting, August 2011.Google Scholar
Dowman, E. (2014) Mineralisation and Fluid Processes in the Alteration Zone Around the Chilwa Island and Kangankunde Carbonatite Complexes, Malawi. PhD thesis, Kingston University, UK.Google Scholar
Dowman, E., Wall, F., Jeffries, T., Treloar, P., Carter, A. and Rankin, A. (2017a) Granitoid zircon forms the nucleus for minerals precipitated by carbonatite-derived metasomatic fluids at Chilwa Island, Malawi. Gondwana Research, 51, 64-77.CrossRefGoogle Scholar
Dowman, E., Wall, F., Treloar, P.J. and Rankin, A.H. (2017b) Rare-earth mobility as a result of multiple phases of fluid activity in fenite around the Chilwa Island Carbonatite, Malawi. Mineralogical Magazine, 81, 13671395.CrossRefGoogle Scholar
Eby, G., Roden-Tice, M., Krueger, H., Ewing, W., Faxon, E. and Woolley, A. (1995) Geochronology and cooling history of the northern part of the Chilwa Alkaline Province, Malawi. Journal of African Earth Sciences, 20, 275288.CrossRefGoogle Scholar
Elliott, H.A.L., Wall, F., Chakhmouradian, A.R., Siegfried, P.R., Dahlgren, S., Weatherley, S., Finch, A.A., Marks, M.A.W., Dowman, E. and Deady, E. (2018) Fenites associated with carbonatite complexes: A review. Ore Geology Reviews, 93, 3859.CrossRefGoogle Scholar
Endurance Gold Corporation. (2013) Bandito REE-Niobium Project, Yukon. Available at https://endurancegold.com/projects/bandito-ree-niobium-project-yukon/overview/.Google Scholar
European Commission. (2017) 2017 list of Critical Raw Materials for the EU. Communication from the European Commission to the European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions COM(2017)490. Brussels.Google Scholar
Finch, A.A. and Walker, F.D.L. (1991) Cathodoluminescence and Microporosity in Alkali Feldspars from the Blå Måne Sø Perthosite, South Greenland. Mineralogical Magazine, 55, 583589.CrossRefGoogle Scholar
Garson, M. (1965) Carbonatites in Southern Malawi. The Government Printer, Zomba, Malawi, 131pp.Google Scholar
Garson, M. and Campbell Smith, W. (1958) Chilwa Island. The Government Printer, Zomba, Malawi, 127pp.Google Scholar
Goodenough, K.M., Schilling, J., Jonsson, E., Kalvig, P., Charles, N., Tuduri, J., Deady, E.A., Sadeghi, M., Schiellerup, H., Müller, A., Bertrand, G., Arvanitidis, N., Eliopoulos, D.G., Shaw, R.A., Thrane, K. and Keulen, N. (2016) Europe's rare earth element resource potential: An overview of REE metallogenetic provinces and their geodynamic setting. Ore Geology Reviews, 72, 838856.CrossRefGoogle Scholar
Goodenough, K.M., Wall, F. and Merriman, D. (2018) The Rare Earth Elements: Demand, Global Resources, and Challenges for Resourcing Future Generations. Natural Resources Research, 27, 201216.CrossRefGoogle Scholar
Heinrich, E. (1966) The Geology of Carbonatites. Rand McNally, Chicago, USA, 555pp.Google Scholar
Humphris, S. (1984) The mobility of the rare earth elements in the crust. Pp. 317342 in: Rare Earth Geochemistry (Henderson, P., editor). Elsevier, Amsterdam.CrossRefGoogle Scholar
Koster van Gross, A. (1990) High-pressure DTA study of the upper three-phase region in the system Na2CO3-H2O. American Mineralogist, 75, 667675.Google Scholar
Kozlov, E. and Arzamastsev, A. (2015) Petrogenesis of metasomatic rocks in the fenitized zones of the Ozemaya Varaka alkaline ultrabasic complex, Kola Peninsula. Petrology, 23, 4567.CrossRefGoogle Scholar
Kozlov, E., Fomina, E., Sidorov, M. and Shilovskikh, V. (2018) Ti-Nb mineralization of late carbonatites and role of fluids in its formation: Petyayan-Vara rare-earth carbonatites (Vuoriyarvi Massif, Russia). Geosciences, 8, 281.CrossRefGoogle Scholar
Kresten, P. (1988) The chemistry of fenitization: Examples from Fen, Norway. Chemical Geology, 68, 329349.CrossRefGoogle Scholar
Kresten, P. and Morogan, V. (1986) Fenitisation at the Fen complex, southern Norway. Lithos, 19, 2742.CrossRefGoogle Scholar
Kröner, A., Collins, A., Hegner, E., Muhongo, S., Willner, A. and Kehelpannala, K. (2001) Has the East African Orogen played any role in the formation and breakup of the supercontinent Rodinia and the amalgamation of Gondwana? New evidence from field relationship and isotopic data. Gondwana Research, 4, 669671.CrossRefGoogle Scholar
Le Bas, M. (1981) Carbonatite magmas. Mineralogical Magazine, 44, 133140.CrossRefGoogle Scholar
Le Bas, M. (2008) Fenites associated with carbonatites. The Canadian Mineralogist, 46, 915932.CrossRefGoogle Scholar
Lindsley, D. (1963) Fe-Ti oxides in rocks as thermometers and oxygen barometers: Equilibrium relations of coexisting pairs of Fe-Ti oxides. Carnegie Institute of Washington Yearbook, 62, 6065.Google Scholar
Louvel, M., Etschmann, B., Guan, Q., Testemale, D. and Brugger, J. (2022) Carbonate complexation enhances hydrothermal transport of rare earth elements in alkaline fluids. Nature Communications, 13, 1456.CrossRefGoogle ScholarPubMed
Loye, E. (2014) The Geological Controls on the Heavy Rare Earth Element Enriched Alteration Zone of Area 4, Lofdal, Khorixas, Namibia. Masters by Research thesis, University of Exeter, UK.Google Scholar
Martin, R.F., Whitley, J.E. and Woolley, A.R. (1978) An investigation of rare-earth mobility: Fenitized quartzites, Borralan complex, N.W. Scotland. Contributions to Mineralogy and Petrology, 66, 6973.CrossRefGoogle Scholar
McDonough, W. and Sun, S. (1995) The composition of the Earth. Chemical Geology, 120, 223253.CrossRefGoogle Scholar
McKie, D. (1966) Fenitisation. Pp. 261294 in: Carbonatites (Tuttle, O. and Getting, J., editors). Interscience Publishers, New York.Google Scholar
Migdisov, A.A. and Williams-Jones, A.E. (2014) Hydrothermal transport and deposition of the rare earth elements by fluorine-bearing aqueous liquids. Mineralium Deposita, 49, 987997.CrossRefGoogle Scholar
Mills, S.J., Kartashov, P.M., Kampf, A.R., Konev, A.A., Koneva, A.A. and Raudsepp, M. (2012) Cordylite-(La), a new mineral species in fenite from the Biraya Fe-REE deposit, Irkutsk, Russia. The Canadian Mineralogist, 50, 12811290.CrossRefGoogle Scholar
Mitchell, R.H. (2015) Primary and secondary niobium mineral deposits associated with carbonatites. Ore Geology Reviews, 64, 626-641.CrossRefGoogle Scholar
Morogan, V. (1989) Mass transfer and REE mobility during fenitization at Alnö, Sweden. Contributions to Mineralogy and Petrology, 103, 25-34.CrossRefGoogle Scholar
Morogan, V. (1994) Ijolite versus carbonatite as sources of fenitization. Terra Nova, 6, 166176.CrossRefGoogle Scholar
Morogan, V. and Woolley, A.R. (1988) Fenitization at the Alnö carbonatite complex, Sweden; distribution, mineralogy and genesis. Contributions to Mineralogy and Petrology, 100, 169182.CrossRefGoogle Scholar
Nadeau, O., Cayer, A., Pelletier, M., Stevenson, R. and Jébrak, M. (2015) The Paleoproterozoic Montviel carbonatite-hosted REE-Nb deposit, Abitibi, Canada: Geology, mineralogy, geochemistry and genesis. Ore Geology Reviews, 67, 314335.CrossRefGoogle Scholar
Palmer, D.A.S. (1998) The Evolution of Carbonatite Melts and their Aqueous Fluids: Evidence from Amba Dongar, India, and Phalaborwa, South Africa. PhD thesis, McGill University, Canada.Google Scholar
Platt, R. and Woolley, A. (1990) The carbonatites and fenites of Chipman Lake, Ontario. The Canadian Mineralogist, 28, 241250.Google Scholar
Plümper, O., Botan, A., Los, C., Liu, Y., Malthe-Sørenssen, A. and Jamtveit, B. (2017) Fluid-driven metamorphism of the continental crust governed by nanoscale fluid flow. Nature Geoscience, 10, 685690.CrossRefGoogle ScholarPubMed
Roseiro, J. (2017) Química-mineral de pirocloros associados a formações carbonatiticas do Bailando (Angola): sua utilização como possíveis indicadores petrogenéticos e metalogenéticos. Masters thesis, Universidade de Lisboa, Portugal.Google Scholar
Roseiro, J., Ribeiro da Costa, I., Figueiras, J., Rodrigues, P. and Mateus, A. (2019) Nb-bearing mineral phases in the Bailundo Carbonatitic Complex (Angola): metallogenesis and implications for mineral exploitation. Pp. 301304 in: XII Congresso Ibérico de Geoquímica/XX Semana Da Geoquímica. Évora meeting, September 2019.Google Scholar
Rubie, D. and Gunter, W. (1983) The Role of Speciation in Alkaline Igneous Fluids during Fenite Metasomatism. Contributions to Mineralogy and Petrology, 82, 165175.CrossRefGoogle Scholar
Simandl, G. and Paradis, S. (2018) Carbonatites: related ore deposits, resources, footprint, and exploration methods. Applied Earth Science, 127, 123152.CrossRefGoogle Scholar
Simonetti, A. and Bell, K. (1994) Isotopic and geochemical investigation of the Chilwa Island carbonatite complex, Malawi: Evidence for a depleted mantle source region, liquid immiscibility, and open-system behaviour. Journal of Petrology, 35, 15971621.CrossRefGoogle Scholar
Smith, M.P. (2007) Metasomatic silicate chemistry at the Bayan Obo Fe–REE–Nb deposit, Inner Mongolia, China: Contrasting chemistry and evolution of fenitising and mineralising fluids. Lithos, 93, 126148.CrossRefGoogle Scholar
Smith, M., Henderson, P. and Campbell, L. (2000) Fractionation of the REE during hydrothermal processes: Constraints from the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia, China. Geochimica et Cosmochimica Acta, 64, 31413160.CrossRefGoogle Scholar
Snelling, N. (1965) Age determinations on three African carbonatites. Nature, 205, 491.CrossRefGoogle Scholar
Southwick, D. (1968) Mineralogy of a rutile- and apatite-bearing ultramafic chlorite rock, Harford County, Maryland. Geological Survey Research, 600, C38C44.Google Scholar
Tan, W., Wang, C.Y., He, H., Xing, C., Liang, X. and Dong, H. (2015) Magnetite-rutile symplectite derived from ilmenite-hematite solid solution in the Xinjie Fe-Ti oxide-bearing, mafic-ultramafic layered intrusion (SW China). American Mineralogist, 100, 23482351.CrossRefGoogle Scholar
Tanis, E.A., Simon, A., Tschauner, O., Chow, P., Xiao, Y., Burnley, P., Cline, C.J., Hanchar, J.M., Pettke, T., Shen, G. and Zhao, Y. (2015) The mobility of Nb in rutile-saturated NaCl-and NaF-bearing aqueous fluids from 1–6.5 GPa and 300–800°C. American Mineralogist, 100, 16001609.CrossRefGoogle Scholar
Timofeev, A., Migdisov, A. and Williams-Jones, A. (2015) An experimental study of the solubility and speciation of niobium in fluorite-bearing aqueous solutions at elevated temperature. Geochimica et Cosmochimica Acta, 158, 103111.CrossRefGoogle Scholar
Verplanck, P., Mariano, A. and Mariano, A. (2016) Rare earth element ore geology of carbonatites. Pp. 532 in: Rare Earth and Critical Elements in Ore Deposits. Society of Economic Geologists Inc., Littleton, USA.CrossRefGoogle Scholar
Verschure, R. and Maijer, C. (2005) A new Rb-Sr isotopic parameter for metasomatism, Δt, and its application in a study of pluri-fenitized gneisses around the Fen ring complex, South Norway. NGU Bulletin, 445, 4571.Google Scholar
Verwoerd, W. (1966) South African carbonatites and their probable mode of origin. Annale van die Uniwersiteit van Stellenbosch, 41, 121233.Google Scholar
Viladkar, S.G. and Ramesh, R. (2014) Stable Isotope geochemistry of some Indian Carbonatites: Implications for magmatic processes and post-emplacement hydrothermal alteration. Comunicacoes Geológicas, 101, 5562.Google Scholar
von Eckermann, H. (1948) The Alkaline District of Alnö Island. Sveriges Geologiska Undersökning, Stockholm, 176pp.Google Scholar
Wall, F. (2000) Mineral Chemistry and Petrogenesis of Rare Earth-Rich Carbonatites with Particular Reference to the Kangankunde Carbonatite, Malawi. PhD thesis, University of London, UK.Google Scholar
Wall, F. (2013) Rare earth elements. Pp. 312339 in: Critical Metals Handbook. John Wiley & Sons, New Jersey, USA.CrossRefGoogle Scholar
Wall, F. and Mariano, A. (1996) Rare earth minerals in carbonatites: a discussion centred on the Kangankunde Carbonatite, Malawi. Pp. 193225 in: Rare Earth Minerals: Chemistry, Origin and Ore Deposit (Jones, A., Wall, F. and Williams, C., editors). Chapman & Hall, London.Google Scholar
Wall, F., Barreiro, B. and Spiro, B. (1994) Isotopic evidence for late-stage processes in carbonatites: rare earth mineralisation in carbonatites and quartz rocks at Kangankunde, Malawi. Mineralogical Magazine, 58, 951952.CrossRefGoogle Scholar
Wall, F., Niku-Paavola, V.S., Müller, A. and Jeffries, T. (2008) Xenotime-(Y) from carbonatite dykes at Lofdal, Namibia: unusually low LREE:HREE ratio in carbonatite, and the first dating of xenotime overgrowths on zircon. The Canadian Mineralogist, 46, 861877.CrossRefGoogle Scholar
Walter, B., Giebel, R.J., Steele-MacInnis, M., Marks, M.A.W., Kolb, J. and Markl, G. (2021) Fluid release in carbonatitic systems and its implication for carbonatite magma ascent, compositional evolution and REE-mineralization. Goldschmidt Virtual Conference 2021, July 2021.Google Scholar
Weng, Z., Jowitt, S. and Mudd, G. (2015) A Detailed Assessment of Global Rare Earth Element Resources: Opportunities and Challenges. Economic Geology, 110, 19251952.CrossRefGoogle Scholar
Williams-Jones, A. and Migdisov, A. (2014) Rare Earth Element Transport and Deposition by Hydrothermal Fluids. Acta Geologica Sinica – English Edition, 88, 472474.CrossRefGoogle Scholar
Williams-Jones, A.E. and Palmer, D.A.S. (2002) The evolution of aqueous–carbonic fluids in the Amba Dongar carbonatite, India: implications for fenitisation. Chemical Geology, 185, 283301.CrossRefGoogle Scholar
Woolley, A. (1969) Some aspects of fenitisation with particular reference to Chilwa Island and Kangankunde, Malawi. Bulletin of British Museum of Natural History (Mineralogy), 2, 191219.Google Scholar
Woolley, A.R. (1982) A discussion of carbonatite evolution and nomenclature, and the generation of sodic and potassic fenites. Mineralogical Magazine, 46, 1317.CrossRefGoogle Scholar
Woolley, A. (2001) Alkaline Rocks and Carbonatites of the World Part 3: Africa. The Geological Society, London, 372pp.Google Scholar
Wu, C., Yuan, Z. and Bai, G. (1996) Rare-earth Deposits in China. Pp. 281310 in: Rare Earth Minerals: Chemistry, Origin and Ore Deposits (Jones, A., Wall, F. and Williams, C., editors). Chapman and Hall, London Mineralogical Magazine.Google Scholar
Yuan, G., Cao, Y., Schulz, H., Hao, F., Gluyas, J., Liu, K., Yang, T., Wang, Y., Xi, K. and Li, F. (2019) A review of feldspar alteration and its geological significance in sedimentary basins: From shallow aquifers to deep hydrocarbon reservoirs. Earth-Science Reviews, 191, 114140.CrossRefGoogle Scholar
Yuguchi, T., Shoubuzawa, K., Ogita, Y., Yagi, K., Ishibashi, M., Sasao, E. and Nishiyama, T. (2019) Role of micropores, mass transfer, and reaction rate in the hydrothermal alteration process of plagioclase in a granitic pluton. American Mineralogist, 104, 536556.CrossRefGoogle Scholar
Zaraisky, G.P., Korzhinskaya, V. and Kotova, N. (2010) Experimental studies of Ta2O5 and columbite-tantalite solubility in fluoride solutions from 300 to 550°C and 50 to 100 MPa. Mineralogy and Petrology, 99, 287-300.CrossRefGoogle Scholar
Zharikov, V.A., Pertsev, N.N., Rusinov, V.L., Callegari, E. and Fettes, D.J. (2007) Metasomatism and metasomatic rocks. In: Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks. Web version 01.02.07. British Geological Survey.Google Scholar
Supplementary material: File

Dowman et al. supplementary material

Tables S1-S8

Download Dowman et al. supplementary material(File)
File 78.8 KB