Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-23T15:34:56.264Z Has data issue: false hasContentIssue false

Complex colour and chemical zoning of sodalite-group phases in a haüynophyre lava from Mt. Vulture, Italy

Published online by Cambridge University Press:  05 July 2018

A. Di Muro*
Affiliation:
Laboratoire de Physique et Chimie des Systèmes Volcaniques, IPGP-Paris VI, Case Courrier 109, Place Jussieu 4, Paris Cedex 05, France
E. Bonaccorsi
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa, Via S. Maria 53, 56126 Pisa, Italy
C. Principe
Affiliation:
Istituto di Geoscienze e Georisorse-CNR, Via G. Moruzzi 1, 56124 Pisa, Italy

Abstract

The haüynophyre emitted from a parasitic vent of the Vulture stratovolcano is a S- and Cl-rich, leucitemelilite- bearing lava flow containing an unusually large amount of sodalite-group minerals (>23 vol.%). Mineralogical and chemical study of phenocrysts has led to the identification of black haüynes, blue lazurites and of Cl-rich white or black noseans. X-ray diffraction (XRD) study confirms the occurrence of nosean having a low symmetry (P23). Raman spectra and XRD data show that S is fully oxidized to SO4 in black haüynes and in white noseans, while it is partly reduced to form S3 groups in blue lazurites, which also contain H2O molecules. Structural and chemical data strongly question the validity of the Hogarth and Griffin (1976) method widely used to resolve the ratio S6+/S2– in sodalite-group phases from EMPA data. Among euhedral phenocrysts, large lazurites are only faintly zoned. All other phases show variable core-rim chemical zoning and many phenocrysts are partially resorbed and/or colour-zoned. Black haüynes have highly variable S/Cl and slightly lower SiO2/Al2O3 ratios, larger FeTOT contents and more compatible trace elements than lazurites. Thin opaque noseansodalite rims surrounding all crystals are interpreted as a result of rapid crystallization driven by exsolution of a S-scavenging fluid phase. We suggest that the extreme complexity of the mineralogical assemblage reflects variable aSiO2 and aH2O of the silicate melts.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anders, E. and Grevesse, N. (1989) Abundances of the elements: Meteoritic and solar. Geochimica et Cosmochimica Acta, 53, 197214.CrossRefGoogle Scholar
Barth, T.F.W. (1932) The structures of the minerals of the sodalite family. Zeitschrift für Kristallographie, 83, 405414.Google Scholar
Brocchini, D., La Volpe, L., Laurenzi, M.A. and Principe, C. (1994) Storia evolutiva del Mt. Vulture. Plinius, 12, 2225.Google Scholar
Brousse, R., Varet, J. and Bizouard, H. (1969) Iron in the minerals of the sodalite group. Contributions to Mineralogy and Petrology, 22, 169184.CrossRefGoogle Scholar
Buchanan, D.L. and Nolan, J. (1979) Solubility of sulfur and sulfide immiscibility in synthetic tholeiitic melts and their relevance to Bushveld-Complex rocks. The Canadian Mineralogist, 17, 483494.Google Scholar
Caggianelli, A., De Fino, M., La Volpe, L. and Piccarreta, G. (1990) Mineral chemistry of Mount Vulture volcanics: petrological implications. Mineralogy and Petrology, 41, 215227.CrossRefGoogle Scholar
Cavarretta, G. and Lombardi, G. (1990) Origin of sulfur in the Quaternari perpotassic melts of Italy; evidence from haüyne sulfur isotope data. Chemical Geology, 82, 1520.CrossRefGoogle Scholar
Deer, W.A., Howie, R.A. and Zussmann, J. (1992) An Introduction to the Rock-forming Minerals, 2nd edition. Longman Scientific and Technical, Harlow, Essex, UK.Google Scholar
De Fino, M., La Volpe, L. and Piccarreta, G. (1982) Magma evolution at Mount Vulture (Southern Italy). Bulletin of Volcanology, 45, 115126.CrossRefGoogle Scholar
De Fino, M., La Volpe, L., Peccerillo, A., Piccarreta, G. and Poli, G. (1986) Petrogenesis of Mount Vulture volcano (Italy): inferences from mineral chemistry, major and trace element data. Contributions to Mineralogy and Petrology, 92, 135145.CrossRefGoogle Scholar
De Lorenzo, G. (1899) Studio Geologico del Monte Vulture. Atti Regia Accademia di Scienze Fisiche e Matematiche. Vol. X, n. 1. Napoli, Italy.Google Scholar
Di Muro, A., Besson, P., Semet, M. and Sharygin, V.V. (2004) Colour zoning of magmatic sodalite group minerals: a chemical and microtextural study. IGC Congress, Florence, Italy.Google Scholar
Dixon, J.E. (1997) Degassing of alkalic basalts. American Mineralogist, 82, 368378.CrossRefGoogle Scholar
D’Orazio, M. (1995) Trace element determination in igneous rocks by ICP-MS: results on ten international reference samples. Periodico di Mineralogia, 64, 315328.Google Scholar
Drake, M.J. (1975) The oxidation state of europium as an indicator of oxygen fugacity. Geochimica et Cosmochimica Acta, 39, 5564.CrossRefGoogle Scholar
Drake, M.J. and Weill, D.F. (1975) Partition of Sr, Ba, Ca, U, Eu2+, Eu3+, and other REE between plagioclase feldspar and magmatic liquid: an experimental study. Geochimica et Cosmochimica Acta, 39, 689712.CrossRefGoogle Scholar
Evsyunin, V.G., Sapozhnikov, A.N., Rastsvetaeva, R.K. and Kashaev, A.A. (1996) Crystal structure of the potassium-rich hauyne from Arissia (Italy). Crystallography Reports, 41, 622625.Google Scholar
Evsyunin, V.G., Rastsvetaeva, R.K., Sapozhnikov, A.N. and Kashaev, A.A. (1998) Modulated structure of orthorhombic lazurite. Crystallography Reports, 43, 9991002.Google Scholar
Hassan, I. (2000) Transmission electron microscopy and differential thermal studies of lazurite polymorphs. American Mineralogist, 85, 13831389.CrossRefGoogle Scholar
Hassan, I. and Buseck, P.R. (1989) Incommensuratemodulated structure of nosean, a sodalite-group mineral. American Mineralogist, 74, 394410.Google Scholar
Hassan, I. and Grundy, H.D. (1989) The structure of nosean, ideally Na8[Al6Si6O24]SO4H2O. The Canadian Mineralogist, 27, 165172.Google Scholar
Hassan, I. and Grundy, H.D. (1991) The crystal structure of hauyne at 293 and 153 K. The Canadian Mineralogist, 29, 123130.Google Scholar
Hassan, I., Peterson, R.C. and Grundy, H.D. (1985) The structure of lazurite, ideally Na6Ca2(Al6Si6O24)S2, a member of the sodalite group. Acta Crystallographica, C41, 827–83.Google Scholar
Hogarth, D. and Griffin, W.L. (1976) New data on lazurite. Lithos, 9, 3954.CrossRefGoogle Scholar
Kress, V. (1997) Magma mixing as a source for Pinatubo sulfur. Nature, 389, 591–593 Kullerud, G. and Yoder, H.S. (1959) Pyrite stability relations in the Fe-S system. Economic Geology, 54, 533572.CrossRefGoogle Scholar
Lavecchia, G. and Boncio, P. (2000) Tectonic setting of the carbonatite-melilite association of Italy. Mineralogical Magazine, 64, 583592.CrossRefGoogle Scholar
Lessing, P. and Grout, M.C. (1971) Hauynitite from Edwards, New York. American Mineralogist, 56, 10961100.Google Scholar
Lofgren, G. (1980) Experimental studies on the dynamic crystallisation of silicate melts. Pp. 487551 in: Physics of Magmatic Processes (Hargraves, R.B., editor). Princeton University Press, New Jersey, USA.CrossRefGoogle Scholar
Marianelli, P. and Sbrana, A. (1998) Risultati di misure di standard di minerali e di vetri naturali in microanalisi a dispersione di energia. Atti della Società Toscana di Scienze Naturali, Memorie Serie A, 105, 5763.Google Scholar
Marini, L., Paiotti, A., Principe, C., Ferrara, G. and Cioni, R. (1994) Isotopic ratio and concentration of sulfur in the undersaturated alkaline magmas of Vulture Volcano (Italy). Bulletin of Volcanology, 56, 487492.CrossRefGoogle Scholar
Melluso, L., Morra, V. and Di Girolamo, P. (1996) The Mt. Vulture volcanic complex (Italy): evidence for distinct parental magmas and for residual melts with melilite. Mineralogy and Petrology, 56, 225250.Google Scholar
Merlino, S. (1984) Feldspathoids: their average and real structures. Pp. 435470 in: Feldspars and Feldspathoids (Brown, W.L., editor). Reidel, Dordrecht, The Netherlands.CrossRefGoogle Scholar
Metrich, N. and Clocchiatti, R. (1996) Sulfur abundance and its speciation in oxidized alkaline melts. Geochimica et Cosmochimica Acta, 60, 41514160.CrossRefGoogle Scholar
Nakagawa, M., Wada, K. and Wood, P. (2002) Mixed magmas, mush chambers and eruption triggers: evidence from zoned clinopyroxene phenocrysts in andesitic scoria from the 1995 eruptions of Ruapehu Volcano, New Zealand. Journal of Petrology, 43, 22792303.CrossRefGoogle Scholar
Nguyen, J.H. and Jeanloz, R. (1993) A computer program to analyse X-ray diffraction films. Review of Scientific Instruments, 64, 34563461.CrossRefGoogle Scholar
Ostroumov, M., Fritsch, E., Faulques, E. and Chauver, O. (2002) Etude spectrometrique de la lazurite du Pamir, Tajikistan. The Canadian Mineralogist, 40, 885893.CrossRefGoogle Scholar
Paiotti, A. (1993) Il Vulcano Vulture (Basilicata): Petrogenesi e geochimica isotopica. PhD thesis, Department of Earth Sciences, University of Pisa, Italy.Google Scholar
Renzulli, A., Upton, B.G.J., Boyce, A. and Ellam, R.M. (1998) Petrology of quartz syenite and hauyne syienite clasts from the Pitigliano Formation, Latera caldera, Vulsini District, Central Italy. European Journal of Mineralogy, 10, 333354.CrossRefGoogle Scholar
Schiattarella, M., Beneduce, P., Di Leo, P., Giano, S.I., Giannandrea, P. and Principe, C. (2004) Assetto strutturale ed evoluzione morfotettonica quaternaria del vulcano del Monte Vulture (Appennino Lucano). Memorie della Società Geologica Italiana, volume speciale Atti della 81ma riunione estiva della Società Geologica Italiana, Turin, submitted.Google Scholar
Schulz, H. (1970) Struktur- und Ueberstrukturuntersuchungen an Nosean-Einkristallen. Investigations of the structure and superstructure of nosean single crystals. Zeitschrift fuer Kristallographie, 131, 114138.Google Scholar
Sharygin, V.V. (1993) Melt evolution during crystallisation of haüyne phonolites of east Eifel (W. Germany). Russian Geology and Geophysics, 34, 8495.Google Scholar
Stoppa, F. and Principe, C. (1997) Eruption style and petrology of a new carbonatitic suite from the Mt. Vulture Southern Italy: The Monticchio Lakes Formation. Journal of Volcanology and Geothermal Research, 78, 251265.Google Scholar
Stoppa, F., Woolley, A.R. and Cundari A. (2002) Extension of the melilite-carbonatite province in the Apennines of Italy: the kamafugite of Grotta del Cervo, Abruzzo. Mineralogical Magazine, 66, 555574.CrossRefGoogle Scholar
Stormer, J.C. and Carmichael, I.S.E. (1971) The free energy of sodalite and the behavior of chloride, fluoride and sulfate in silicate magmas. American Mineralogist, 56, 292306.Google Scholar
Tarling, S.E., Barnes, P. and Klinowski, J. (1988) The structure and Si,Al distribution of the ultramarines. Acta Crystallographica, B44, 128135.CrossRefGoogle Scholar
Taylor, D. (1967) The sodalite group of minerals. Contributions to Mineralogy and Petrology, 16, 172188.CrossRefGoogle Scholar
Tomisaka, T. and Eugster, H.P. (1968) Synthesis of the sodalite group and subsolidus equilibria in the sodalite-noselite system. Mineralogical Journal, 5, 249275.CrossRefGoogle Scholar
Tracy, R.J. (2003) Chemistry and origin of zoned hauyne in Tahitian phonolite, with implications for magmatic fractionation. Pp. 164184 in: Melt Inclusions in Volcanic Systems: Methods, Applications and Problems (DeVivo, B. and Bodnar, R.J., editors). Developments in Volcanology 5, Elsevier Science B.V., Amsterdam.Google Scholar
Van Peteghem, J.K. and Burley, B.J. (1963) Studies on solid solution between sodalite, nosean and hauyne. The Canadian Mineralogist, 7, 808813.Google Scholar
Wörner, G., Beusen, J.M., Duchateau, N., Gijbels, R. and Schmincke, H.U. (1983) Trace element abundances and mineral/melt distribution coefficients in phonolites from the Laacher See Volcano (Germany). Contributions to Mineralogy and Petrology, 84, 152173.Google Scholar
Wulff-Pedersen, E., Neumann, E., Burke, E.A.J., Vannucci, R., Bottazzi, P., Ottolini, L., Gjonnes, J. and Hansen, V. (2000) Origin and structural character of haüyness in spinel dunite xenoliths from La Palma, Canary Islands. American Mineralogist, 85, 13971405.CrossRefGoogle Scholar