Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-13T14:07:22.644Z Has data issue: false hasContentIssue false

Deformation and metamorphism of massive sulphides at Sulitjelma, Norway

Published online by Cambridge University Press:  05 July 2018

Nigel J. Cook
Affiliation:
Mineralogisches Institut der Universität Würzburg, Am Hubland, 8700 Würzburg, Germany
Christopher Halls
Affiliation:
Mining Geology, Department of Geology, Imperial College of Science and Technology, London SW7 2BP, U.K.
Alan P. Boyle
Affiliation:
Department of Earth Sciences, University of Liverpool, Brownlow Street, Liverpool L69 3BX, U.K.

Abstract

The copper-bearing stratabound pyritic massive sulphide bodies contained in metamorphosed basic eruptives of Ordovician age at Sulitjelma in Nordland County, Norway, form one of the important fields of sulphide mineralisation within the Köli Nappe Complex. The sulphide bodies and their enclosing rocks were subject to successive stages of penetrative deformation and recrystallisation during the cycle of metamorphism and tectonic transport caused by the Scandian Orogeny. Textures within the ores and the immediate envelope of schists show that strain was focused along the mineralised horizons. The marked contrast in competence between the massive pyritic sulphides and their envelopes of alteration composed dominantly of phyllosilicates, and the metasediments of the overlying Furulund Group, led to the formation of macroscale fold and shear structures. On the mesoto microscale, a variety of textures have been formed within the pyrite-pyrrhotite-chalcopyrite-sphalerite sulphide rocks as a result of strain and recrystallisation. Variations in pyrite:pyrrhotite ratios and in the texture and proportions of associated gangue minerals evidently governed the strength and ductility of the sulphide rocks so that the same sulphide mineral can behave differently, displaying different textures in different matrices. In massive pyritic samples there is evidence of evolution towards textural equilibrium by recrystallisation, grain growth and annealment during the prograde part of the metamorphic cycle. Later, brittle deformation was superimposed on these early fabrics and the textural evidence is clearly preserved. By comparing published data on the brittle-ductile transformation boundaries of sulphide minerals with the conditions governing metamorphism at Sulitjelma, it is concluded that most of the brittle deformation in the sulphides took place during or after D3 under retrograde greenschist conditions. Grain growth of pyrite in matrices of more ductile sulphides during the prograde and early retrograde stages of metamorphism produced the coarse metablastic textures for which Sulitjelma is well-known. In some zones of high resolved shear stress, pyrite shows ductile behaviour which could be explained by a dislocation flow mechanism operating at conditions close to the metamorphic peak. In those horizons in which pyrrhotite is the dominant iron sulphide, the contrast in ductility between silicates, pyrite and pyrrhotite has led to the development of spectacular tectonoclastic textures in which fragments of wall rock have been broken, deformed, rolled and rotated within the ductile pyrrhotite matrix.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, F. D. (1910) Differential pressure on minerals and rocks. J. Geol., 18, 489525.Google Scholar
Atkinson, B. K. (1975) Experimental deformation of polycrystalline pyrite: Effects of temperature, confining pressure, strain rate and porosity. Econ. Geol., 70, 473–87.Google Scholar
Beach, A. (1979) Pressure solution as a metamorphic process in deformed terrigenous sedimentary rocks. Lithos, vol. 12, 51-8.Google Scholar
Berg, G. (1927) Ober das Vorkommen sog. porphyr-ischer Kieskristalle in den Lagcrstitten der intrusiven Kiesgruppe: Gesteins Untersuch. Preuss. Geol. Lan-desanst. Mitt. Abt., 3, no. 3, 811.Google Scholar
Boyle, A. P. (1980) The Suliqelma amphibolites, Norway: Part of a lower Palaeozoic Ophiolite com-plex 7 In Ophiolites, Proc. Int. Ophiolite Symposium, Cyprus 1979 (A. Panayioutou, ed.), Cyprus Geol. Surv. Dept., 567-75.Google Scholar
Boyle, A. P. (1987) A model for the stratigraphic and metamorphic inversions at Sulitjelma, central Scandes. Geol. Mag., 124, 451–66.Google Scholar
Boyle, A. P. (1989) The geochemistry of the Sulitjclma ophiolite and associated basic volcanics: tectonic implications. In: The Caledonide Geology of Scandinavia R. A. Gayer, ed.), Graham and Trottman, London, 153-63.Google Scholar
Boyle, A. P. and Westhead, K. (1992) Metamorphic peak geothermobarometry in the Furulund Group, Sulit-jelma, Scandinavian Caledonides: Implications for uplift. J. Met. Geol. (in press).Google Scholar
Boyle, A. P. Mason, R., and Hansen, T. S. (1985) A new tectonic perspective of the Sulitjelma region: In The Caledonide Orogen, Scandinavia and related areas (D. G. Gee and B. A. Sturt, eds.), John Wiley and Sons, London, 529-42.Google Scholar
Brodie, K. H. and Rutter, E. H. (1985) On the relationhip between deformation and metamorphism with special reference to the behaviour of basic rocks. In Metamorphic Reactions, Kinetics, Textures, Deformation (A. B. Thompson and D. C. Rubie, eds.), Advances in Physical Geochemistry, Volume 4; Springer Verlag, New York, 138-79.Google Scholar
Brooker, D. D., Craig, J. R., and Rimstidt, J. D. (1987) Ore metamorphism and pyrite porphyroblast development at the Cherokee Mine, Ducktown, Tennessee. Econ. Geol., 82, 7286.Google Scholar
Buerger, J. J. (1928) The plastic deformation of ore minerals (Parts 1 and 2). Am. Mineral., 13, 117. 35-51.Google Scholar
Burton, K. W., Boyle, A. P., Kirk, W. L., and Mason, R. (1989) Pressure, temperature and structural evolution of the Sulitjelma fold-nappe, central Scandinavian Caledonides. In: Evolution of Metamorphic belts (J. S. Daly etal., eds.) Geol. Soc. (London) Spec. Pub. 43, p. 391-11.Google Scholar
Burton, K. B. and O'Nions, R. K. (1991) High-resolution garnet chronometry and the rates of metamorphic processes. Earth Planet. Sci. Letters, 107, 649–71.Google Scholar
Burton, K. W. and O'Nions, R. K. (1992) The timing of mineral growth across a regional metamorphic sequence. Nature, 357, 235–8.Google Scholar
Carpenter, J. R. (1968) Apparent retrograde metamorphism: Another example of the influence of structural deformation on metamorphic differentiation. Con-trib. Mineral. Petrol., 17, 173–86.Google Scholar
Carstens, C. W. (1944) Om dannelsen av de norske svovelkisforckomster. K. Nor. Vidensk. Selsk. Forh., 17, 2754.Google Scholar
Clark, B. R. and Kelly, W. C. (1973) Sulfide deformation studies: 1. Experimental deformation of pyrrho-tite and sphalerite to 2000 Bars and 500°C Econ. Geol., 68, 332-52.Google Scholar
Cook, N. J. (1987) The Sulitjelma orebodies, Northern Norway: A geochemical and mineralogical investigation. Unpublished Ph.D. thesis, University of London, 545 p.Google Scholar
Cook, N. J. (1992) Antimony-rich mineral parageneses and their association with Au minerals within massive sulphide deposits at Sulitjelma, Norway. Neues Jahrb. Miner., Mh., 97-106.Google Scholar
Cook, N. J. Halls, C., and Kaspersen, P. O. (1990) The geology of the Sulitjelma ore field, northern Nor-way—some new interpretations. Econ. Geol., 85, 1720–37.Google Scholar
Couderc, J.-J., Bras, J., Fago, M., and Levade, C. (1980) Étude par microscopic electronique en transmission de l'etat de d6formation de pyrites de diff6rentes provenances. Bull. Mindral., 103, 547–57.Google Scholar
Cox, S. F. (1987) Flow mechanisms in sulfide minerals. Ore Geology Reviews, 2, 133–71.Google Scholar
Cox, S. F. Etheridge, M. A., and Hobbs, B. E. (1981) The experimental ductile deformation of polycrystalline and single crystal pyrite. Econ. Geol., 76, 2105–18.Google Scholar
Craig, J. R. (1983) Metamorphic features in Appala-chian massive sulphides. Mineral. Mag., 47, 515–25.Google Scholar
Craig, J. R. (1990) Ore textures and paragenetic studiessome modern case histories and sources of comparative data. In Advanced Microscopic Studies of Ore Minerals (J. L. Jambor and D. J. Vaughan, eds.), Min. Assoc. Canada Short Course Notes, 17, 263-317.Google Scholar
Craig, J. R. and Vokes, F. M. (1993) The metamorphism of pyrite and pyritic ores. Mineral. Mag. 57, 318.Google Scholar
Craig, J. R. and Vokes, F. M. and Simpson, C. (1991) Rotational fabrics in pyrite from Ducktown, Tennessee. Econ. Geol., 86, 1737–46.Google Scholar
Etheridge, M. A., Wall, V. J., Cox, S. F., and Vernon, R. H. (1983) The role of the fluid phase during regional metamorphism and deformation. J. Metam. Geol., 1, 205226.Google Scholar
Frietsch, R., Papunen, H., and Vokes, F. M. (1979) The ore deposits in Finland, Norway, and Sweden—a Review. Econ. Geol., 74, 975-1001.Google Scholar
Graf, J. L. and Skinner, B. J. (1970) Strength and deformation of pyrite and pyrrhotite. Ibid., 65, 206-15.Google Scholar
Graf, J. L. and Skinner, B. J. Bras, J., Fago, M., and Couderc, J.-J. (1981) Transmission electron microscopic observation of plastic deformation in experimentally deformed pyrite. Ibid., 76, 738-42.Google Scholar
Kalliokoski, J. (1965) Metamorphic features in North American massive sulfide deposits. Ibid., 60, 485-505.Google Scholar
Kautsky, G. A. (1953) Der geologische Bau des Sulitjelma-Salojauregebeites in den nordskand-inavischen Kaledoniden. Sveriges Geol. UndersOkn-ing, 528C, 232 pp.Google Scholar
Kelly, W. C. and Clark, B. R. (1975) Sulfide deformation studies: III. Experimental deformation of chalco-pyrite to 2000 bars and 500°C Econ. Geol., 70, 431–53.Google Scholar
Kollung, S. (1989) Bedrock geological map of the Sulitjelma region, northern Norway, scale 1:100000, with description. Norges Geol. Unders. Skrifter, 93, p. 147.Google Scholar
Kollung, S. (1990) Berggrunnskart over Sulitelmafeltet. Mfilestokk 1:100000. Norges Geologiske Unders., Bilag til NGU Skrifier, 93, Trondheim.Google Scholar
Krause, H. (1956) Zur Kenntnis der metamorphen Kieslagerst∼itte von Sulitjelma (Norwegen). Neues Jahrb. Mineral., Abh., 89, 137–48.Google Scholar
Kullerud, G. and Yoder, H. S. (1959) Pyrite stability in the Fe-S system. Econ. Geol., 54, 533–72.Google Scholar
Laznicka, P. (1985) Concordant versus discordant ore deposits and ore transformations. In: Handbook of strata-bound and stratiform ore deposits (K. H. Wolf, ed.), Vol. 11, Elsevier, Amsterdam, 119316.Google Scholar
Lister, G. S. and Williams, P. F. (1983) The partitioning of deformation in flowing rock masses. Tectonophys., 92, 134.Google Scholar
Marshall, B. and Gilligan, L. B. (1987) An introduction to remobilisation: information from ore-body geometry and experimental considerations. Ore Geology Reviews, 2, 87131.Google Scholar
McClay, K. R. (1982) Tectonic and sedimentary structure in the sulphide orebodies of Mt. Isa (Australia) and Sullivan (Canada). Inst. Min. Metall. Trans., 91, section B, 146-52.Google Scholar
McClay, K. R. and Ellis, P. G. (1983) Deformation and recrystallisation of pyrite. Mineral. Mag., 47, 527–38.Google Scholar
McDonald, J. A. (1967) Metamorphism and its effects of sulfide assemblages. Mineralium Deposita, 2, 200–20.Google Scholar
Mookherjee, A. (1971) Deformation of Pyrite (discussion). Econ. Geol., 66, 200.Google Scholar
Mookherjee, A. (1976) Ores and metamorphism: temporal and genetic relationships. In Handbook of stratabound and stratiform ore deposits (Wolf, K. H., ed.), vol. 4. Elsevier, Amsterdam, p.203-60.Google Scholar
Nicholson, R. and Rutland, R. W. R. (1966) A section across the Norwegian Caledonides: Bodø to Sulitjelma. Norges Geol. Unders., 260, 186.Google Scholar
Olsen, J. (1980) Genesis of the Joma stratiform sulfide deposit, central Norwegian Caledonides. In: Proceedings of the 5th Quadrennial 1AGOD Symposium, Utah (J. D. Ridge, ed.), E. Schweizerbart'sche Verlagsbuchhandlung, Stuttgart, 745-57.Google Scholar
Pedersen, R.-B., Furnes, H., and Dunning, G. (1991) A U/Pb age for the Sulitjelma Gabbro, Northern Norway: further evidence for the development of a Caledonide marginal basin in Ashgill-Llandovery time. Geol. Mag., 128, 141–53.Google Scholar
Ramdohr, P. (1938) Antimonreiche Paragenesen von Jakobsbakken bei Sulitjelma. Norges Geol. Tidsskr., 18, 275–89.Google Scholar
Ramdohr, P. (1960) Die Erzmineralien und lhre Verwachsun- gen, Akademie-Verlag, Berlin, 1089 p.Google Scholar
Rutter, E. H. (1976) The kinetics of rock deformation by pressure solution. Phil. Trans. Roy. Soc., A238, 203-19.Google Scholar
Salmon, B. C., Clark, B. R., and Kelly, W. C. (1974) Sulphide deformation studies. II. Experimental deformation of galena to 2000 Bars and 400°C Econ. Geol., 69, 116.Google Scholar
Selkman, S. O. (1983) Stress and displacement distributions around pyrite grains. J. Struct. Geol., 5, 4752.Google Scholar
Siemes, H., Hennig-Michaeli, C., and Martens, L. (1991) The importance of deformation experiments on minerals for the interpretation of metamorphic ore textures. Ore Geology Reviews, 6, 475–83.Google Scholar
Smith, C. S. (1948) Grains, phases and interfaces: an interpretation of microstructure. Trans. Amer. Inst. Mining Metall. Engin., 175, 1551.Google Scholar
Stephens, M. B. (1986) Terrane analysis of Sulitjelma, Upper Allochthon, Scandinavian Caledonides. Geol. Fören. Stockh. Förh., 108, 303–4.Google Scholar
Stephens, M. B. Swinden, H. S., and Slack, J. F. (1984) Correlation of massive sulfide deposits in the Appalachian-Caledonian Orogen on the basis of paleotectonic setting. Econ. Geol., 79, 1442–78.Google Scholar
Stephens, M. B. Gustavson, M., Ramberg, I. B., and Zaehrisson, E. (1985) The Calcdonides of central-north Scan-dinavia—a tectonostratigraphic overview. In: The Caledonide Orogen, Scandinavia and related areas (D. G. Gee and B. A. Sturt, eds.), John Wiley and Sons, London, 135162.Google Scholar
Thompson, A. B. and Connolly, J. A. D. (1992) Migration of metamorphic fluid: some aspects of mass and heat transfer. Earth Science Reviews, 32, 107–21.Google Scholar
Veit, K. (1922) Schiebungen und Translationen in Mineralien. Neues Jahrb. f. Min. Geol. u. Pal., Bl.Bd., 45, 125–8.Google Scholar
Vogt, T. (1927) Sulitelmafeltets Geologi og Petrografi. Norges Geol. Unders., 121, 560 pp.Google Scholar
Vogt, T. (1952) Flowage structures and ore deposits of the Caledonides of Norway. Int. Geol. Congress XVllI Session, Great Britain 1948, Procs. Pt. 33, 240-4.Google Scholar
Vokes, F. M. (1963) Geological studies on the Caledonian pyritic zinc lead orebody at Bleikvassli, Nor-dland, Norway. Norges Geol. Unders., 22, 126.Google Scholar
Vokes, F. M. (1968) Regional metamorphism of the Palaeozoic geosynclinical sulphide ore deposits of Norway. Trans. Inst. Min. Metall., Sect. B (Appl. Earth Sci.), 77, B53-B59.Google Scholar
Vokes, F. M. (1969) A review of the metamorphism of sulphide deposits. Earth Sci. Rev., 5, 99143.Google Scholar
Vokes, F. M. (1973) ‘Ball textures’ in sulfide ores. Geol. FOren. Stockholm Forh., 95, 403–6.Google Scholar
Vokes, F. M. (1976) Caledonian massive sulphide deposit in Scandinavia: Acomparative Review. In Handbook of strata-bound and stratiform ore deposits (K. H. Wolf, ed.), Vol 6, Elsevier, Amsterdam, 79127.Google Scholar
Vokes, F. M. and Craig, J. R. (1993) Post-recrystallisation phenomena in metamorphosed strata-bound sulphide ores. Mineral. Mag. 57, 1928.Google Scholar
Wilson, M. R. (1971) The timing of orogenic activity in the Bodr tract. Norges Geol. Unders., 269, 184–9.Google Scholar
Wilson, M. R. (1973) The geological setting of the Sulitjelma ore bodies, central Norwegian Caledonides. Econ. Geol., 68, 307–16.Google Scholar