Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-23T06:22:28.230Z Has data issue: false hasContentIssue false

Ebnerite and epiebnerite: NH4ZnPO4 dimorphs with zeolite-type frameworks from the Rowley mine, Arizona, USA

Published online by Cambridge University Press:  08 March 2024

Anthony R. Kampf*
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA
Xiangping Gu
Affiliation:
School of Geosciences and Info-Physics, Central South University, Changsha, Hunan 410083, China
Hexiong Yang
Affiliation:
Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, AZ 85721-0077, USA
Chi Ma
Affiliation:
Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, USA
Joe Marty
Affiliation:
Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, California 90007, USA
*
Corresponding author: Anthony R. Kampf; Email: akampf@nhm.org

Abstract

Ebnerite and epiebnerite, both with the ideal formula NH4ZnPO4, are new mineral species from the Rowley mine, Maricopa County, Arizona, USA. They occur in an unusual bat-guano-related, post-mining assemblage of phases. Epiebnerite grows epitactically on ebnerite and replaces it. Ebnerite and epiebnerite are found in intimate association with alunite, halite, mimetite, newberyite, sampleite, struvite and wulfenite on hematite-rich quartz–baryte matrix. Crystals of ebnerite are colourless narrow prisms up to ~0.3 mm in length. The streak is white, lustre is vitreous, Mohs hardness is ~2, tenacity is brittle and fracture is splintery. The density is 2.78(2) g⋅cm–3. Ebnerite is optically uniaxial (–) with ω = 1.585(2) and ɛ = 1.575(2). Epiebnerite occurs as colourless prisms or blades, up to about 10 × 3 × 2 μm, in parallel growth forming ribs with serrated edges epitactic on ebnerite prisms. The streak is white, lustre is vitreous, Mohs hardness is probably ~2, tenacity is brittle. The calculated density is 2.851 g⋅cm–3. Epiebnerite is optically biaxial with all indices of refraction near 1.580. Electron microprobe analysis gave the empirical formula [(NH4)0.89K0.06]Σ0.95(Zn0.96Cu0.07)Σ1.03[(P0.97Si0.03)Σ1.00O4] for ebnerite and [(NH4)0.67K0.28]Σ0.95(Zn0.99Cu0.02)Σ1.02(P1.00O4) for epiebnerite. Ebnerite is hexagonal, P63, with a = 10.67051(16), c = 8.7140(2) Å, V = 859.25(3) Å3 and Z = 8. Epiebnerite is monoclinic, P21, with a = 8.796(16), b = 5.457(16), c = 8.960(16) Å, β = 90.34(6)°, V = 430.1(17) Å3 and Z = 4. The structures of ebnerite (R1 = 0.0372 for 1168 Io > 2σI reflections) and epiebnerite (known from synthetic monoclinic NH4ZnPO4) are zeolite-like frameworks based upon corner-sharing linkages between alternating ZnO4 and PO4 tetrahedra with channels in the frameworks hosting the NH4 groups. The two structures are topologically distinct. Ebnerite belongs to the family of ‘stuffed derivatives’ of tridymite, whereas epiebnerite possesses an ABW-type zeolite structure.

Type
Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Koichi Momma

References

Bu, X., Feng, P., Gier, T.E. and Stucky, G.D. (1997) Structural and chemical studies of zeolite ABW type phases: Syntheses and characterizations of an ammonium zincophosphate and an ammonium beryllophosphate zeolite ABW structure. Zeolites, 19, 200208.CrossRefGoogle Scholar
Buerger, M.J. (1954) The stuffed derivatives of the silica structures. American Mineralogist, 39, 600614.Google Scholar
Donnay, J.H. and Harker, D. (1937) A new law of crystal morphology extending the law of Bravais. American Mineralogist, 22, 446467.Google Scholar
Frost, R.L., Palmer, S.J. and Pogson, R.E. (2011) Raman spectroscopy of newberyite Mg (PO3OH)⋅3H2O: A cave mineral. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 79, 11491153.CrossRefGoogle ScholarPubMed
Gagné, O.C. and Hawthorne, F.C (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.Google Scholar
García-Rodríguez, L., Rute-Pérez, Á., Piñero, J.R. and González-Silgo, C. (2000) Bond-valence parameters for ammonium-anion interactions. Acta Crystallographica, B56, 565569.CrossRefGoogle Scholar
Harrison, W.T., Sobolev, A.N. and Phillips, M.L. (2001) Hexagonal ammonium zinc phosphate, (NH4)ZnPO4, at 10 K. Acta Crystallographica, C57, 508509.Google Scholar
Kahlenberg, V., Fischer, R.X. and Baur, W.H. (2001) Symmetry and structural relationships among ABW-type materials. Zeitschrift für Kristallographie, 216, 489494.CrossRefGoogle Scholar
Kampf, A.R., Cooper, M.A., Nash, B.P., Cerling, T., Marty, J., Hummer, D.R., Celestian, A.J., Rose, T.P. and Trebisky, T.J. (2017) Rowleyite, [Na(NH4,K)9Cl4][V5+,4+2(P,As)O8]6n[H2O,Na,NH4,K,Cl], a new mineral with a mesoporous framework structure. American Mineralogist, 102, 10371044.Google Scholar
Kampf, A.R., Cooper, M.A., Rossman, R.R., Nash, B.P., Hawthorne, F.C. and Marty, J. (2019a) Davidbrownite-(NH4), (NH4,K)5(V4+O)2(C2O4)[PO2.75(OH)1.25]4⋅3H2O, a new phosphate-oxalate mineral from the Rowley mine, Arizona, USA. Mineralogical Magazine, 84, 869877.CrossRefGoogle Scholar
Kampf, A.R., Celestian, A.J., Nash, B.P. and Marty, J. (2019b) Phoxite, (NH4)2Mg2(C2O4)(PO3OH)2(H2O)4, the first phosphate-oxalate mineral. American Mineralogist, 103, 973979.CrossRefGoogle Scholar
Kampf, A.R., Celestian, A.J., Nash, B.P. and Marty, J. (2021a) Allantoin and natrosulfatourea, two new bat–guano minerals from the Rowley mine, Maricopa County, Arizona, U.S.A. The Canadian Mineralogist, 59, 603616.CrossRefGoogle Scholar
Kampf, A.R., Cooper, M.A., Celestian, A.J., Nash, B.P. and Marty, J. (2021b) Thebaite-(NH4), (NH4,K)3Al(C2O4)(PO3OH)2(H2O), a new phosphate-oxalate mineral from the Rowley mine, Arizona, USA. Mineralogical Magazine, 85, 379386.CrossRefGoogle Scholar
Kampf, A.R., Cooper, M.A., Celestian, A.J., Ma, C. and Marty, J. (2022a) Dendoraite-(NH4), a new phosphate-oxalate mineral related to thebaite-(NH4) from the Rowley mine, Arizona, USA. Mineralogical Magazine, 86, 531538.CrossRefGoogle Scholar
Kampf, A.R., Cooper, M.A., Celestian, A.J., Ma, C. and Marty, J. (2022b) Relianceite-(K), a new phosphate-oxalate mineral related to davidbrownite-(NH4) from the Rowley mine, Arizona, USA. Mineralogical Magazine, 86, 539547.CrossRefGoogle Scholar
Kampf, A.R., Gu, X., Yang, H. and Marty, J. (2023) Ebnerite, IMA 2022-123. CNMNC Newsletter 72; Mineralogical Magazine, 87, https://doi.org/10.1180/mgm.2023.21Google Scholar
Kampf, A.R., Ma, C., Hawthorne, F.C. and Marty, J. (2024a) Carboferriphoxite, IMA 2023-097. CNMNC Newsletter 77, Mineralogical Magazine, 88, https://doi.org/10.1180/mgm.2024.5Google Scholar
Kampf, A.R., Ma, C., Hawthorne, F.C. and Marty, J. (2024b) Ferriphoxite, IMA 2023-096. CNMNC Newsletter 77, Mineralogical Magazine, 88, https://doi.org/10.1180/mgm.2024.5Google Scholar
Kampf, A.R., Ma, C. and Marty, J. (2024c) Epiebnerite, IMA 2023-066. CNMNC Newsletter 76; Mineralogical Magazine, 88, https://doi.org/10.1180/mgm.2023.89Google Scholar
Khomyakov, A.P., Nechelyustov, G.N., Sokolova, E., Bonaccorsi, E., Merlino, S. and Pasero, M. (2002) Megakalsilite, a new polymorph of KAlSiO4 from the Khibina alkaline massif, Kola peninsula, Russia: Mineral description and crystal structure. The Canadian Mineralogist, 40, 961970.CrossRefGoogle Scholar
Le, S.N. and Navrotsky, A. (2008) Energetics of formation of alkali and ammonium cobalt and zinc phosphate frameworks. Journal of Solid State Chemistry, 181, 2029.CrossRefGoogle Scholar
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.CrossRefGoogle Scholar
Pekov, I.V., Yapaskurt, V.O., Belakovskiy, D.I., Vigasina, M.F., Zubkova, N.V., Sidorov, E.G. and Della Ventura, G. (2017) New arsenate minerals from the Arsenatnaya fumarole, Tolbachik volcano, Kamchatka, Russia. VII. Pharmazincite, KZnAsO4. Mineralogical Magazine, 81, 10011008.CrossRefGoogle Scholar
Sergeeva, A.V., Zhitova, E.S and Bocharov, V.N. (2019) Infrared and Raman spectroscopy of tschermigite, (NH4)Al(SO4)2⋅12H2O. Vibrational Spectroscopy, 105, 102983.CrossRefGoogle Scholar
Sheldrick, G.M. and IUCr. (2015a) SHELXT – Integrated space-group and crystal-structure determination. Acta Crystallographica, A71, 38.Google Scholar
Sheldrick, G.M. (2015b) Crystal structure refinement with SHELX. Acta Crystallographica, C71, 38.Google Scholar
Števko, M., Sejkora, J., Uher, P., Cámara, F., Škoda, R. and Vaculovič, T. (2018) Fluorarrojadite-(BaNa), BaNa4CaFe13Al(PO4)11(PO3OH)F2, a new member of the arrojadite group from Gemerská Poloma, Slovakia. Mineralogical Magazine, 82, 863876.CrossRefGoogle Scholar
Wilson, W.E. (2020) The Rowley mine, Painted Rock Mountains, Maricopa County, Arizona. Mineralogical Record, 51, 181226.Google Scholar
Yakovenchuk, V.N., Pakhomovsky, Y.A., Konopleva, N.G., Panikorovskii, T.L. Bazai, A., Mikhailova, J.A., Bocharov, V.N., Ivanyuk, G.Yu. and Krivovichev, S.V. (2018) Batagayite, CaZn2(Zn,Cu)6(PO4)4(PO3OH)3⋅12H2O, a new phosphate mineral from Këster tin deposit (Yakutia, Russia): occurrence and crystal structure. Mineralogy and Petrology, 112, 591601.CrossRefGoogle Scholar
Yang, H., Gu, X., Kampf, A.R., Marty, J., Gibbs., R.B. and Downs., R.T. (2023a) Edwindavisite, IMA 2023-056. CNMNC Newsletter 75, Mineralogical Magazine, 87, https://doi.org/10.1180/mgm.2023.76Google Scholar
Yang, H., Gu, X., Gibbs, R.B. and Downs, R.T. (2023b) Loomisite, Ba[Be2P2O8]⋅H2O, the first natural example with the zeolite ABW-type framework, from Keystone, Pennington County, South Dakota, USA. Mineralogical Magazine, 87, 7985.CrossRefGoogle Scholar
Supplementary material: File

Kampf et al. supplementary material

Kampf et al. supplementary material
Download Kampf et al. supplementary material(File)
File 158.4 KB