Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-28T21:56:46.988Z Has data issue: false hasContentIssue false

Ferro-ferri-katophorite, a new clinoamphibole from the silicocarbonatite dykes in Sierra de Maz, La Rioja, Argentina

Published online by Cambridge University Press:  19 January 2023

Fernando Colombo*
Affiliation:
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Mineralogía, Vélez Sarsfield 1611 (X5016GCA) Córdoba, Argentina CONICET, CICTERRA, Vélez Sarsfield 1611 (X5016GCA) Córdoba, Argentina
Jordi Rius
Affiliation:
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
Elies Molins
Affiliation:
Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
Héctor Biglia
Affiliation:
Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Mineralogía, Vélez Sarsfield 1611 (X5016GCA) Córdoba, Argentina
Miguel Á. Galliski
Affiliation:
IANIGLA, CCT-MENDOZA CONICET, Avda. Ruiz Leal s/n, Parque Gral. San Martín, C.C. 330, (5500) Mendoza, Argentina
María Florencia Márquez-Zavalía
Affiliation:
IANIGLA, CCT-MENDOZA CONICET, Avda. Ruiz Leal s/n, Parque Gral. San Martín, C.C. 330, (5500) Mendoza, Argentina Mineralogía y Petrología, FAD, Universidad Nacional de Cuyo, Centro Universitario (5502) Mendoza, Argentina
Edgardo G. A. Baldo
Affiliation:
CONICET, CICTERRA, Vélez Sarsfield 1611 (X5016GCA) Córdoba, Argentina
Agustín Kriscautzky
Affiliation:
Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Mineralogía, Vélez Sarsfield 1611 (X5016GCA) Córdoba, Argentina School of Physical Sciences, University of Arkansas at Little Rock, 2801 S. University Ave. Little Rock AR – 72204 (ETAS 329L), USA
*
*Author for correspondence: Fernando Colombo, Email: fosfatos@yahoo.com.ar

Abstract

Ferro-ferri-katophorite (IMA2016–008), ideally Na(NaCa)(Fe2+4Fe3+)(Si7Al)O22(OH)2, was found as xenocrysts up to 3 cm long and replacement rims around aegirine–augite in silicocarbonatite dykes cropping out in the Sierra de Maz, La Rioja province, NW Argentina. Ferro-ferri-katophorite is black and has vitreous lustre and a pale green streak. The new mineral is brittle, with perfect {110} cleavage and has a Mohs hardness of 6. The measured density is 3.32(1) g/cm3. In plane-polarised light it is strongly pleochroic, X = light greenish brown, Y = dark greyish brown and Z = dark greyish olive green. Absorption (very strong) is Z > Y > X. The orientation is: Zb, and X forms a small angle with [001]. Ferro-ferri-katophorite is biaxial (–), with α = 1.688(3), β = 1.697(3), γ = 1.698(3) and 2V(calc) = 36.7°. It is monoclinic, space group C2/m, a = 9.8270(7), b = 18.0300(8), c = 5.316(4) Å, β = 104.626(4)°, V = 911.4(6) Å3 and Z = 2. The strongest five lines in the powder X-ray diffraction pattern [d in Å (I)(hkl)] are: 8.416(100)(110), 3.135(50)(310), 2.815(26)(330), 2.720(18)(151) and 1.4422(15)($\bar{6}$61). The chemical composition is SiO2 43.08, TiO2 2.76, ZrO2 0.15, Al2O3 8.76, V2O3 0.07, Fe2O3 9.28, FeO 13.85, MnO 0.43, MgO 6.88, CaO 6.58, ZnO 0.06, Na2O 5.55, K2O 1.18, Cl 0.01, H2O calc 1.36, total 99.95 wt.%. The formula unit (confirmed by single-crystal structural analysis) is (Na0.74K0.23)Σ0.97(Ca1.08Na0.91Mn0.01)Σ2.00(Fe2+1.78Mg1.57Fe3+1.07Ti4+0.32Al0.19Mn2+0.04Zr0.01V3+0.01Zn0.01)Σ5.00(Si6.61Al1.39)Σ8.00O22(OH1.59O0.61)Σ2.00. Aluminium is strongly ordered at the T(1) site. Ferro-ferri-katophorite is the 9th species carrying the katophorite root name and is related to katophorite by the Fe2+ + Fe3+ → Mg2+ + Al3+ substitution. Type material was deposited at the Museo de Mineralogía “Stelzner”, Universidad Nacional de Córdoba, Argentina, under catalogue number MS003341.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of Great Britain and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Giancarlo Della Ventura

References

Biglia, H. (2015) Petrología y geoquímica del complejo de sienitas y carbonatitas de la Sierra de Maz, Provincia de La Rioja. Degree thesis, National University of Córdoba, Argentina.Google Scholar
Brøgger, W.C. (1894) Die Eruptivgesteine des Kristianiagebietes, I. Die Gesteine der Grorudit-Tinguait-Serie. Videnskabsselkabets Skrifter. I. Mathematisk-naturv, 1894, , 2739.Google Scholar
Casquet, C., Pankhurst, R.J., Galindo, C., Rapela, C., Fanning, C.M., Baldo, E.GA., Dahlquist, J.A., González-Casado, J.M. and Colombo, F. (2008a) A deformed alkaline igneous rock–carbonatite complex from the Western Sierras Pampeanas, Argentina: Evidence for late Neoproterozoic opening of the Clymene Ocean? Precambrian Research, 165, 205220CrossRefGoogle Scholar
Casquet, C., Pankhurst, R.J., Rapela, C.W., Galindo, C., Fanning, C.M., Chiaradia, M., Baldo, E.G.A, González-Casado, J.M. and Dahlquist, J.A. (2008b) The Mesoproterozoic Maz terrane in the Western Sierras Pampeanas, Argentina, equivalent to the Arequipa–Antofalla block of southern Peru? Implications for West Gondwana margin evolution. Gondwana Research, 13, 163175.CrossRefGoogle Scholar
Colombo, F., Rius, J., Molins, E., Biglia, H., Galliski, M.Á., Márquez-Zavalía, M.F., Baldo, E.G.A. and Kriscautzky, A. (2016) Ferro-ferri-katophorite, IMA 2016-008. CNMNC Newsletter No. 31, June 2016, page 696. Mineralogical Magazine, 80, 691697.Google Scholar
Currie, K.L. and van Breemen, O. (1996) The origin of rare minerals in the Kipawa syenite complex, western Quebec. The Canadian Mineralogist, 34, 435451.Google Scholar
Farrugia, L.J. (2012) WinGX and ORTEP for Windows: an update. Journal of Applied Crystallography, 45, 849854.CrossRefGoogle Scholar
Hawthorne, F.C. (1983) The crystal chemistry of amphiboles; the octahedral strip. The Canadian Mineralogist, 21, 227241.Google Scholar
Hawthorne, F.C. and Oberti, R. (2007) Amphiboles: crystal chemistry. Pp. 154 in: Amphiboles: Crystal Chemistry, Occurrence, and Health Issues (Hawthorne, F.C., Oberti, R., Della Ventura, G. and Mottana, A., editors). Reviews in Mineralogy and Geochemistry, 67. Mineralogical Society of America and the Geochemical Society, Chantilly, Virginia, USA.CrossRefGoogle Scholar
Hawthorne, F.C., Ungaretti, L., Oberti, R., Bottazzi, P. and Czamanske, G.K. (1993) Li: An important component in igneous alkali amphiboles. American Mineralogist, 78, 733745.Google Scholar
Hawthorne, F.C., Ungaretti, L. and Oberti, R. (1995). Site populations in minerals; terminology and presentation of results of crystal-structure refinement. The Canadian Mineralogist, 33, 907911.Google Scholar
Hawthorne, F.C., Oberti, R. and Sardone, N. (1996) Sodium at the A site in clinoamphiboles: The effects of composition on the patterns of order. The Canadian Mineralogist, 34, 577593.Google Scholar
Hawthorne, F.C., Oberti, R., Harlow, G.E., Maresch, W.V., Martin, R.F., Shumacher, J.C. and Welch, M.D. (2012) IMA report nomenclature of the amphibole supergroup. American Mineralogist, 97, 20312048.CrossRefGoogle Scholar
Hjøllum, J. and Madsen, M.B. (2009) Fit;o) – A Mössbauer Spectrum Fitting Program. Cornell University Library, USA, doi:10.13140/RG.2.2.19504.92169Google Scholar
Konopleva, N.G., Ivanyuk, G.Y., Pakhomovsky, Y.A., Yakovenchuk, V.N., Men'shikov, Y.P. and Korchak, Y.A. (2008) Amphiboles of the Khibiny Alkaline Pluton, Kola Peninsula, Russia. Geology of Ore Deposits, 50, 720731.CrossRefGoogle Scholar
Leake, B.E. (1978) Nomenclature of amphiboles. American Mineralogist, 63, 10231052.Google Scholar
Leake, B.E., Woolley, A.R., Arps, C.E., Birch, W.D., Gilbert, M.C., Grice, J.D., Hawthorne, F.C., Kato, A., Kisch, H.J., Krivovichev, V.G., Linthout, K., Laird, J., Mandarino, J., Maresch, W.V., Nickel, E.H., Rock, N.M.S., Schumacher, J.C., Smith, D.C., Stephenson, N.C.N., Ungaretti, L., Whittaker, E.J.W. and Youzhi, G. (1997) Nomenclature of amphiboles; report of the subcommittee on amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names. The Canadian Mineralogist, 35, 219246.Google Scholar
Mazdab, F.K. (2003) The diversity and occurrence of potassium-dominant amphiboles. The Canadian Mineralogist, 41, 13291344.CrossRefGoogle Scholar
Oberti, R. and Ghose, S. (1993) Crystal chemistry of a complex Mn-bearing alkali amphibole (“tirodite”) on the verge of exsolution. European Journal of Mineralogy, 5, 11531160.CrossRefGoogle Scholar
Oberti, R., Ungaretti, L., Cannillo, E. and Hawthorne, F.C. (1992) The behaviour of Ti in amphiboles; I, Four-and six-coordinate Ti in richterite. European Journal of Mineralogy, 4, 425439.CrossRefGoogle Scholar
Oberti, R., Vannucci, R., Zanetti, A., Tiepolo, M. and Brumm, R. (2000) A crystal-chemical re-evaluation of amphibole/melt and amphibole/clinopyroxene DTi values in petrogenetic studies. American Mineralogist, 85, 407409.CrossRefGoogle Scholar
Oberti, R., Boiocchi, M., Hawthorne, F.C., Ball, N. A. and Harlow, G.E. (2015a) Katophorite from the Jade Mine Tract, Myanmar: mineral description of a rare (grandfathered) endmember of the amphibole supergroup. Mineralogical Magazine, 79, 355363.CrossRefGoogle Scholar
Oberti, R., Boiocchi, M., Hawthorne, F.C., Cámara, F., Ciriotti, M.E. and Berge, S.A. (2015b) Ti-rich fluoro-richterite from Kariåsen (Norway): the oxo-component and the use of Ti4+ as a proxy. The Canadian Mineralogist, 53, 285294.CrossRefGoogle Scholar
Oberti, R., Boiocchi, M., Hawthorne, F.C., Ball, N.A. and Martin, R.F. (2019) Ferri-fluoro-katophorite from Bear Lake diggings, Bancroft area, Ontario, Canada: a new species of amphibole, ideally Na(NaCa)(Mg4Fe3+)(Si7Al)O22F2. Mineralogical Magazine, 83, 413417.CrossRefGoogle Scholar
Pekov, I.V. and Podlesnyi, A.S. (2004) Kukisvumchorr Deposit: Mineralogy of Alkaline Pegmatites and Hydrotermalites. Mineralogical Almanac, vol. 7, 140 pages + xxiv photo's pages.Google Scholar
Pushcharovskii, D.Yu., Lebedeva, Yu.S., Pekov, I.V., Ferraris, G., Novakova, A.A. and Ivaldi, G. (2003) Crystal Structure of Magnesioferrikatophorite. Crystallography Reports, 48, 1623.CrossRefGoogle Scholar
Rezvukhin, D.I., Alifirova, T.A., Golovin, A.V. and Korsakov, A.V. (2020) A plethora of epigenetic minerals reveals a multistage metasomatic overprint of a mantle orthopyroxenite from the Udachnaya Kimberlite. Minerals, 10, 264.CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (2001) Recent developments of theprogram FULLPROF. Commission on Powder Diffraction (IUCr). Newsletter, 26, 1219.Google Scholar
Schäfer, C., and Schäfer, H. (2018) Über Dawsonit, Britholith, Ferriallanit und Einige Amphibole aus den Auswürflingen des Laacher Vulkans. Der Aufschluss, 69, 2012019.Google Scholar
Schönenberger, J. and Markl, G. (2008) The magmatic and fluid evolution of the Motzfeldt intrusion in South Greenland: insights into the formation of agpaitic and miaskitic rocks. Journal of Petrology, 49, 15491577.CrossRefGoogle Scholar
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Walker, N. and Stuart, D. (1983) An empirical method for correcting diffractometer data for absorption effects. Acta Crystallographica, A39, 158166.CrossRefGoogle Scholar
Zhou, L., Li, D., Zhao, Z. and Wang, Y. (1989) Blue asbestos in miarolitic cavities of Xiangshan alkali granite. Acta Mineralogica Sinica, 9, 3.Google Scholar
Supplementary material: PDF

Colombo et al. supplementary material

Colombo et al. supplementary material 1

Download Colombo et al. supplementary material(PDF)
PDF 168.8 KB
Supplementary material: File

Colombo et al. supplementary material

Colombo et al. supplementary material 2

Download Colombo et al. supplementary material(File)
File 88.4 KB
Supplementary material: PDF

Colombo et al. supplementary material

Colombo et al. supplementary material 3

Download Colombo et al. supplementary material(PDF)
PDF 151.3 KB
Supplementary material: File

Colombo et al. supplementary material

Colombo et al. supplementary material 4

Download Colombo et al. supplementary material(File)
File 65.5 KB