Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-28T08:58:02.540Z Has data issue: false hasContentIssue false

Guangyuanite, Pb3Cl3(Se4+O3)(OH), a new lead chloride selenite mineral from the El Dragón mine, Potosí, Bolivia

Published online by Cambridge University Press:  07 December 2023

Hexiong Yang*
Affiliation:
Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, AZ 85721-0077, USA
Xiangping Gu
Affiliation:
School of Geosciences and Info-Physics, Central South University, Changsha, Hunan 410083, China
James A. McGlasson
Affiliation:
Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, AZ 85721-0077, USA
Ronald B. Gibbs
Affiliation:
Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, AZ 85721-0077, USA
Robert T. Downs
Affiliation:
Department of Geosciences, University of Arizona, 1040 E. 4th Street, Tucson, AZ 85721-0077, USA
*
Corresponding author: Hexiong Yang; Email: hyang@arizona.edu

Abstract

A new mineral species, guangyuanite, ideally Pb3Cl3(Se4+O3)(OH), was discovered from the El Dragón mine, Antonio Quijarro Province, Potosí Department, Bolivia. It occurs as equant crystals. Associated minerals are Co-bearing krut'aite–penroseite, chalcomenite, schmiederite, olsacherite, phosgenite, anglesite, cerussite and franksousaite. Guangyuanite is pale yellow–brown in transmitted light, transparent with white streak and vitreous lustre. It is brittle and has a Mohs hardness of ~3. No parting or cleavage was observed. The calculated density is 7.63 g/cm3. An electron microprobe analysis yielded an empirical formula [based on 7 (O + Cl) atoms per formula unit] of Pb3.02Cl3.01(Se4+0.99O3)(OH), which can be simplified to Pb3Cl3(Se4+O3)(OH).

Guangyuanite is isostructural with synthetic Pb3Br3(Se4+O3)(OH). It is orthorhombic, with space group Pnma and unit-cell parameters a = 11.0003(5), b = 10.6460(5), c = 7.7902 Å, V = 912.31(6) Å3 and Z = 4. The crystal structure of guangyuanite contains two symmetrically-distinct Pb (Pb1 and Pb2) cations, with Pb1 coordinated by eight anions (4O + 4Cl) and Pb2 only by six anions (3O + 3Cl), forming a marked lopsided coordination typical of Pb2+ with a stereochemically active 6s2 lone electron pair. The Se4+ cation forms a typical [Se4+O3] trigonal pyramid. The crystal structure of guangyuanite can be described as consisting of layers of edge-sharing [Pb1O4Cl4] polyhedra parallel to (100). These layers are linked together by sharing polyhedral corners (Cl atoms), as well as [Pb2O3Cl3] and [Se4+O3] groups. Chemically, guangyuanite is one of six lead chloride selenite minerals reported thus far and closely related to orlandiite Pb3Cl4(Se4+O3)⋅H2O.

Type
Article
Copyright
Copyright © University of Arizona, 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: David Hibbs

References

Becker, R., Johnsson, M., Kremer, R.K., Klauss, H.H. and Lemmens, P. (2006) Crystal structure and magnetic properties of FeTe2O5X (X= Cl, Br): A frustrated spin cluster compound with a new Te(IV) coordination polyhedron. Journal of the American Chemical Society, 128, 1546915475.CrossRefGoogle Scholar
Becker, R., Prester, M., Berger, H., Lin, P.H., Johnsson, M., Drobac, D. and Zivkovic, I. (2007) Crystal structure and magnetic properties of two new cobalt selenite halides: Co5(SeO3)4X2 (X= Cl, Br). Journal of Solid State Chemistry, 180, 10511059.CrossRefGoogle Scholar
Berdonosov, P.S., Stefanovitch, S.Y. and Dolgikh, V.A. (2000) A new bismuth–selenium oxychloride, BiSeO3Cl: crystal structure and dielectric and nonlinear optical properties. Journal of Solid State Chemistry, 149, 236241.CrossRefGoogle Scholar
Berdonosov, P.S., Olenev, A.V. and Dolgikh, V.A. (2012) Lead (II) selenite halides Pb3(SeO3)2X 2 (X = Br, I): Synthesis and crystal structure. Crystallography Reports, 57, 200204.CrossRefGoogle Scholar
Brown, I.D. (2009) Recent developments in the methods and applications of the bond valence model. Chemical Reviews, 109, 68586919.CrossRefGoogle Scholar
Cooper, M.A. and Hawthorne, F.C. (1995) Diaboleite, Pb2Cu(OH)4Cl2, a defect perovskite structure with stereoactive lone-pair behavior of Pb2+. The Canadian Mineralogist, 33, 11251129.Google Scholar
Demartin, F., Gramaccioli, C.M. and Pilati, T. (2003) The crystal structure of orlandiite, Pb3Cl4(SeO3)⋅H2O, a complex case of twinning and disorder. The Canadian Mineralogist, 41, 11471153.CrossRefGoogle Scholar
Dityatyev, O.A., Smidt, P., Stefanovich, S.Y., Lightfoot, P., Dolgikh, V.A. and Opperman, H. (2004) Phase equilibria in the Bi2TeO5–Bi2SeO5 system and a high temperature neutron powder diffraction study of Bi2SeO5. Solid state sciences, 6, 915922.CrossRefGoogle Scholar
Djemel, M., Abdelhedi, M., Ktari, L. and Dammak, M. (2013) X-ray diffraction, Raman study and electrical properties of the new mixed compound Rb1.7K0.3(SO4)0.88(SeO4)0.12Te(OH)6. Journal of Molecular Structure, 1047, 1521.CrossRefGoogle Scholar
Downs, R.T. and Hall-Wallace, M. (2003) The American mineralogist crystal structure database. American Mineralogist, 88, 247250.Google Scholar
Finney, J.J., Graeber, E.J., Rosenzweig, A. and Hamilton, R.D. (1977) The structure of chloroxiphite, Pb3CuO2(OH)2Cl2. Mineralogical Magazine, 41, 357361.CrossRefGoogle Scholar
Förster, H.-J., Bindi, L. and Stanley, C.J. (2016) Grundmannite, CuBiSe2, the Se-analogue of emplectite, a new mineral from the El Dragón mine, Potosí, Bolivia. European Journal of Mineralogy, 28, 467477.CrossRefGoogle Scholar
Förster, H.-J., Bindi, L., Stanley, C.J. and Grundmann, G. (2017) Hansblockite,(Cu,Hg)(Bi,Pb)Se2, the monoclinic polymorph of grundmannite: a new mineral from the Se mineralization at El Dragón (Bolivia). Mineralogical Magazine, 81, 229240.CrossRefGoogle Scholar
Förster, H.-J., Bindi, L., Grundmann, G. and Stanley, C.J. (2018) Cerromojonite, CuPbBiSe3, from El Dragόn (Bolivia): A new member of the bournonite group. Minerals, 8, 420.CrossRefGoogle Scholar
Förster, H.-J., Ma, C., Grundmann, G., Bindi, L. and Stanley, C.J. (2019) Nickeltyrrellite, CuNi2Se4, a New Member of the Spinel Supergroup from El Dragón, Bolivia. The Canadian Mineralogist, 57, 637646.CrossRefGoogle Scholar
Frost, R.L. and Keeffe, E.C. (2008) Raman spectroscopic study of the schmiederite Pb2Cu2[(OH)4|SeO3|SeO4]. Journal of Raman Spectroscopy, 39, 1408–1402.CrossRefGoogle Scholar
Frost, R.L., Weier, M.L., Reddy, B.J. and Cejka, J. (2006) A Raman spectroscopic study of the uranyl selenite mineral haysenite. Journal of Raman Spectroscopy, 37, 816821.CrossRefGoogle Scholar
Gemmi, M., Campostrini, I., Demartin, F., Gorelik, T.E. and Gramaccioli, C.M. (2012) Structure of the new mineral sarrabusite, Pb5CuCl4(SeO3)4, solved by manual electron-diffraction tomography. Acta Crystallographica, B68, 1523.CrossRefGoogle Scholar
Gillberg, M. (1960) Perite, a new oxyhalide mineral from Långban, Sweden. Arkiv för Mineralogi och Geologi, 2, 565570.Google Scholar
Giuseppetti, G. and Tadini, C. (1973) Riesame della struttura cristallina della nadorite: PbSbO2Cl. Periodico di Mineralogia, 42, 335345.Google Scholar
Gong, Y.P., Hu, C.L., Ma, Y.X., Mao, J.G. and Kong, F. (2019) Pb2Cd(SeO3)2X2 (X = Cl and Br): two halogenated selenites with phase matchable second harmonic generation. Inorganic Chemistry Frontiers, 6, 31333139.CrossRefGoogle Scholar
Grundmann, G. and Förster, H.-J. (2017) Origin of the El Dragón Selenium Mineralization, Quijarro Province, Potosí, Bolivia. Minerals, 7, 168.CrossRefGoogle Scholar
Grundmann, G., Lehrberger, G. and Schnorrer-Köhler, G. (1990) The El Dragón mine, Potosí, Bolivia. Mineralogical Record, 21, 133150.Google Scholar
Grundmann, G., Lehrberger, G. and Schnorrer-Köhler, G. (2007) The “El Dragón Mine”, Porco, Potosí, Bolivia – Selenium minerals. Mineral UP, 1, 1625.Google Scholar
Holland, T.J.B. and Redfern, S.A.T. (1997) Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61, 6577.CrossRefGoogle Scholar
Jiang, H.L. and Mao, J.G. (2006) New members in the Nin+1(QO3)nX2 family: unusual 3D network based on Ni4ClO3 cubane-like clusters in Ni7(TeO3)6Cl2. Inorganic chemistry, 45, 75937599.CrossRefGoogle Scholar
Johnsson, M., Törnroos, K.W., Mila, F. and Millet, P. (2000) Tetrahedral clusters of copper(II): crystal structures and magnetic properties of Cu2Te2O5X2 (X= Cl, Br). Chemistry of materials, 12, 28532857.CrossRefGoogle Scholar
Johnsson, M., Törnroos, K.W., Lemmens, P. and Millet, P. (2003) Crystal structure and magnetic properties of a new two-dimensional S= 1 quantum spin system Ni5(TeO3)4X2 (X= Cl, Br). Chemistry of materials, 15, 6873.CrossRefGoogle Scholar
Kampf, A.R., Mills, S.J. and Nash, B.P. (2016a) Pauladamsite,Cu4(SeO3)(SO4)(OH)4⋅2H2O, a new mineral from the Santa Rosa mine, Darwin district, California, USA. Mineralogical Magazine, 80, 949958.CrossRefGoogle Scholar
Kampf, A.R., Mills, S.J., Nash, B.P., Thorne, B. and Favreau, G. (2016b) Alfredopetrovite, a new selenite mineral from the El Dragón mine, Bolivia. European Journal of Mineralogy, 28, 479484.CrossRefGoogle Scholar
Kasatkin, A.V., Plášil, J., Marty, J., Agakhanov, A.A., Belakovskiy, D.I. and Lykova, I.S. (2014) Nestolaite, CaSeO3⋅H2O, a new mineral from the Little Eva mine, Grand County, Utah, USA. Mineralogical Magazine, 78, 497505.CrossRefGoogle Scholar
Kim, S.H., Yeon, J. and Halasyamani, P.S. (2009) Noncentrosymmetric polar oxide material, Pb3SeO5: synthesis, characterization, electronic structure calculations, and structure−property relationships. Chemistry of Materials, 21, 53355342.CrossRefGoogle Scholar
Kim, M.K., Kim, S.H., Chang, H.Y., Halasyamani, P.S. and Ok, K.M. (2010) New noncentrosymmetric tellurite phosphate material: synthesis, characterization, and calculations of Te2O(PO4)2. Inorganic chemistry, 49, 70287034.CrossRefGoogle ScholarPubMed
Kong, F., Huang, S.P., Sun, Z.M., Mao, J.G. and Cheng, W.D. (2006) Se2(B2O7): a new type of second-order NLO material. Journal of the American Chemical Society, 128, 77507751.CrossRefGoogle ScholarPubMed
Kovrugin, V.M., Colmont, M., Siidra, O.I., Mentré, O., Al-Shuray, A., Gurzhiy, V.V. and Krivovichev, S.V. (2015) Oxocentered Cu (ii) lead selenite honeycomb lattices hosting Cu (i) Cl2 groups obtained by chemical vapor transport reactions. Chemical Communications, 51, 95639566.CrossRefGoogle Scholar
Krivovichev, S.V., Avdontseva, E.Y. and Burns, P.C. (2004) Synthesis and crystal structure of Pb3O2(SeO3). Zeitschrift für anorganische und allgemeine Chemie, 630, 558562.CrossRefGoogle Scholar
Lafuente, B., Downs, R.T., Yang, H. and Stone, N. (2015) The power of databases: the RRUFF project. Pp. 130 in: Highlights in Mineralogical Crystallography (Armbruster, T. and Danisi, R.M., editors). W. De Gruyter, Berlin, Germany.Google Scholar
Libowitzky, E. (1999) Correlation of O–H stretching frequencies and O–H⋅⋅⋅O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 10471059.CrossRefGoogle Scholar
Mandarino, J.A. (1981) The Gladstone–Dale relationship. IV. The compatibility concept and its application. The Canadian Mineralogist, 19, 441450.Google Scholar
Millet, P., Johnsson, M., Pashchenko, V., Ksari, Y., Stepanov, A. and Mila, F. (2001) New copper (II)–lone electron pair elements–oxyhalides compounds: syntheses, crystal structures, and magnetic properties. Solid State Ionics, 141, 559565.CrossRefGoogle Scholar
Mills, S.J., Kampf, A.R., Housley, R.M., Christy, A.G., Thorne, B., Chen, Y.-S. and Steele, I.M. (2014) Favreauite, a new selenite mineral from the El Dragón mine, Bolivia. European Journal of Mineralogy, 26, 771781.CrossRefGoogle Scholar
Ok, K.M. and Halasyamani, P.S. (2002) Anionic templating: Synthesis, structure, and characterization of novel three-dimensional mixed-metal oxychlorides Te4M3O15Cl (M= Nb5+ or Ta5+). Inorganic Chemistry, 41, 38053807.CrossRefGoogle ScholarPubMed
Ok, K.M., Bhuvanesh, N.S.P. and Halasyamani, P.S. (2001) Bi2TeO5: synthesis, structure, and powder second harmonic generation properties. Inorganic Chemistry, 40, 19781980.CrossRefGoogle ScholarPubMed
Paar, W.H., Cooper, M.A., Moëlo, Y., Stanley, C.J., Putz, H., Topa, D., Roberts, A.C., Stirling, J., Raith, J.G. and Rowe, R. (2012) Eldragónite, Cu6BiSe4(Se2), A new mineral species from the El Dragón Mine, Potosí, Bolivia, and its crystal structure. The Canadian Mineralogist, 50, 281294.CrossRefGoogle Scholar
Porter, Y. and Halasyamani, P.S. (2001) A low temperature method for the synthesis of new lead selenite chlorides: Pb3(SeO3)(SeO2OH)Cl3 and Pb3(SeO3)2Cl2. Inorganic Chemistry, 40, 26402641.CrossRefGoogle Scholar
Porter, Y., Ok, K.M., Bhuvanesh, N.S.P. and Halasyamani, P.S. (2001) Synthesis and characterization of Te2SeO7: a powder second-harmonic-generating study of TeO2, Te2SeO7, Te2O5, and TeSeO4. Chemistry of materials, 13, 19101915.CrossRefGoogle Scholar
Rouse, R.C. (1973) Hematophanite, a derivative of the perovskite structure. Mineralogical Magazine, 39, 4953.CrossRefGoogle Scholar
Shang, M. and Halasyamani, P.S. (2020) Mixed lone-pair and mixed anion compounds: Pb3(SeO3)(HSeO3)Br3, Pb3(SeO3)(OH)Br3, CdPb8(SeO3)4Cl4Br6 and RbBi(SeO3)F2. Journal of Solid State Chemistry, 282, 121121.CrossRefGoogle Scholar
Sheldrick, G.M. (2015a) SHELXT – Integrated space-group and crystal structure determination. Acta Crystallographica, A71, 38.Google Scholar
Sheldrick, G.M. (2015b) Crystal structure refinement with SHELX. Acta Crystallographica, C71, 38.Google Scholar
Shuvalov, R.R., Vergasova, L.P., Semenova, T.F., Filatov, S.K., Krivovichev, S.V., Siidra, O.I. and Rudashevsky, N.S. (2013) Prewittite, KPb1.5Cu6Zn(SeO3)2O2Cl10, a new mineral from Tolbachik fumaroles, Kamchatka peninsula, Russia: description and crystal structure. American Mineralogist, 98, 463469.CrossRefGoogle Scholar
Siidra, O.I., Krivovichev, S.V., Turner, R.W. and Rumsey, M.S. (2008) Chloroxiphite Pb3CuO2(OH)2Cl2: structure refinement and description in terms of oxocentred OPb4 tetrahedra. Mineralogical Magazine, 72, 793798.CrossRefGoogle Scholar
Siidra, O., Kozin, M.S., Depmeier, W., Kayukov, R.A. and Kovrugin, V.M. (2018) Copper–lead selenite bromides: a new large family of compounds partly having Cu2+ substructures derivable from kagome nets. Acta Crystallographica, B74, 712724.Google Scholar
Vergasova, L.P., Krivovichev, S.V., Britvin, S.N., Fitatov, S.K., Berns, P.K. and Ananyev, V.V. (2005) Allochalcoselite, Cu+Cu2+5 PbO2(SeO3)2Cl5 – a new mineral from volcanic exhalations (Kamchatka, Russia). Zapiski Rossiiskogo Mineralogicheskogo Obshchetstva, 134, 7074.Google Scholar
Wickleder, M.S. (2002) Inorganic lanthanide compounds with complex anions. Chemical Reviews, 102, 20112088.CrossRefGoogle ScholarPubMed
Wickleder, M.S., Buchner, O., Wickleder, C., Sheik, S.E., Brunklaus, G. and Eckert, H. (2004) Au2(SeO3)2(SeO4): Synthesis and characterization of a new noncentrosymmetric selenite-selenate. Inorganic Chemistry, 43, 58605864.CrossRefGoogle Scholar
Yang, H., McGlasson, J.A., Ronald B. Gibbs R.B. and Downs R.T. (2022) Franksousaite, PbCu(Se6+O4)(OH)2, the Se6+ analogue of linarite, a new mineral from the El Dragón mine, Potosí, Bolivia. Mineralogical Magazine, 86, 792798.CrossRefGoogle Scholar
Yang, H., Gu, X., Gibbs, R.B. and Downs, R.T. (2023a) wangkuirenite, IMA 2023-030. CNMNC Newsletter 74. Mineralogical Magazine, 87, 783787, https://doi.org/10.1180/mgm.2023.54.Google Scholar
Yang, H., Gu, X., Jenkins, R.A., Gibbs, R.B. and Downs, R.T. (2023b) Bernardevansite, Al2(Se4+O3)3⋅6H2O, dimorphous with alfredopetrovite and the Al-analogue of mandarinoite, from the El Dragón mine, Potosí, Bolivia. Mineralogical Magazine, 87, 18.CrossRefGoogle Scholar
Yang, H., Gu, X., Jenkins, R.A., Gibbs, R.B., McGlasson, J.A. and Scott, M.M. (2023c) Petermegawite, Al6(Se4+O3)3[SiO3(OH)](OH)9⋅10H2O, a new Al-bearing selenite mineral, from the El Dragón mine, Potosí, Bolivia. The Canadian Journal of Mineralogy and Petrology, 61, 987998.CrossRefGoogle Scholar
Yang, H., Gu, X., McGlasson, J.A. and Gibbs, R.B. (2023d) Guangyuanite, IMA 2022-124. CNMNC Newsletter 72; Mineralogical Magazine, 87, https://doi.org/10.1180/mgm.2023.21Google Scholar
Zhang, D., Johnsson, M., Berger, H., Kremer, R.K., Wulferding, D. and Lemmens, P. (2009) Separation of the oxide and halide part in the oxohalide Fe3Te3O10Cl due to high Lewis acidity of the cations. Inorganic Chemistry, 48, 65996603.CrossRefGoogle ScholarPubMed
Zhang, D., Berger, H., Kremer, R.K., Wulferding, D., Lemmens, P. and Johnsson, M. (2010) Synthesis, crystal structure, and magnetic properties of the copper selenite chloride Cu5(SeO3)4Cl2. Inorganic chemistry, 49, 96839688.CrossRefGoogle ScholarPubMed
Zhang, S., Hu, C., Li, P., Jiang, H. and Jiang-Gao Mao, J. (2012) Syntheses, crystal structures and properties of new lead(II) or bismuth(III) selenites and tellurite. Dalton Transactions, 41, 95329542.CrossRefGoogle ScholarPubMed
Supplementary material: File

Yang et al. supplementary material

Yang et al. supplementary material
Download Yang et al. supplementary material(File)
File 112.3 KB