Hostname: page-component-848d4c4894-2pzkn Total loading time: 0 Render date: 2024-06-02T13:22:16.269Z Has data issue: false hasContentIssue false

Hydrothermal fluid evolution in the ‘Botro ai Marmi’ quartz-monzonitic intrusion, Campiglia Marittima, Tuscany, Italy. Evidence from a fluid-inclusion investigation

Published online by Cambridge University Press:  29 May 2018

Paolo Fulignati*
Affiliation:
Dipartimento di Scienze della Terra, Università di Pisa - 56126 Pisa, Italy

Abstract

The quartz-monzonitic intrusion of ‘Botro ai Marmi’ in Tuscany, Italy, can be considered to be a typical example of an intrusion-centred magmatic hydrothermal system. The evolution of hydrothermal fluids in the ‘Botro ai Marmi’ intrusion was investigated using fluid-inclusion analyses to provide suitable physico-chemical constraints on the fluids involved in the late- to post-magmatic hydrothermal activity that affected the intrusion, providing inferences on their origin and variations of temperature and pressure with time.

This work demonstrates that the earliest fluids circulating in the ‘Botro ai Marmi’ intrusion were high-temperature brines exsolved directly from the crystallizing magma. This fluid circulated in the intrusion under lithostatic conditions (P > 90 MPa, T > 540°C). A second evolutionary stage of the magmatic hydrothermal system is marked by the transition from lithostatic (>90 MPa) to hydrostatic dominated conditions (50 to 10 MPa). In this stage the fluids are also interpreted to be mainly orthomagmatic in origin but unmixed in a high-salinity brine and in a low-salinity vapour aqueous phase, at a temperature ranging from ~500 to 300°C. These fluids were responsible for the potassic alteration facies. At a later stage of hydrothermal evolution, abundant meteoric dominated fluids entered the system and are associated with propylitic alteration. This event marks the transition from a magmatic-hydrothermal system to a typical hydrothermal (‘geothermal’) system, which can be assumed to be similar to some extent to the nearby active high-enthalpy geothermal system of Larderello. Low-temperature and low-salinity meteoric water-dominated fluids characterize the latest stage of the ‘Botro ai Marmi’ hydrothermal system.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor: Katharina Pfaff

References

Acocella, V. and Rossetti, F. (2002) The role of extensional tectonics at different crustal levels on granite ascent and emplacement: an example from Tuscany (Italy). Tectonophysics, 354, 7183.Google Scholar
Ahmad, S.N. and Rose, A.W. (1980) Fluid inclusions in porphyry and skarn ore at Santa Rita, New Mexico. Economic Geology, 75, 229250.Google Scholar
Bakker, R.J. and Schilli, S.E. (2016) Formation conditions of leucogranite dykes and aplite-pegmatite dykes in the eastern Mt. Capanne plutonic complex (Elba, Italy): fluid inclusion studies in quartz, tourmaline, andalusite and plagioclase. Mineralogy and Petrology, 110, 4363.Google Scholar
Barberi, F., Innocenti, F. and Mazzuoli, R. (1967) Contributo alla conoscenza chimico-petrologica e magmatologica delle rocce intrusive, vulcaniche e filoniane del Campigliese (Toscana). Memorie della Società Geologica Italiana, 6, 643681.Google Scholar
Becker, S.P., Fall, A. and Bodnar, R.J. (2008) Synthetic fluid inclusions. XVII PVTX properties of high salinity H2O-NaCl solutions (>30 wt % NaCl): Application to fluid inclusions that homogenize by halite disappearance from porphyry copper and other hydrothermal ore deposits. Economic Geology, 103, 539554.30+wt+%+NaCl):+Application+to+fluid+inclusions+that+homogenize+by+halite+disappearance+from+porphyry+copper+and+other+hydrothermal+ore+deposits.+Economic+Geology,+103,+539–554.>Google Scholar
Bellani, S., Brogi, A., Lazzarotto, A., Liotta, D. and Ranalli, G. (2004) Heat flow, deep temperatures and extensional structures in the Larderello Geothermal Field (Italy): constraints on geothermal fluid flow. Journal of Volcanology and Geothermal Research, 132, 1529.Google Scholar
Bodnar, R.J. (1993) Revised equation and table for determining the freezing point depression of H2O-NaCl solutions. Geochimica et Cosmochimica Acta, 57, 683684.Google Scholar
Bodnar, R.J. (1994) Synthetic fluid inclusions: XII. The system H2O-NaCl. Experimental determination of the halite liquidus and isochores for a 40 wt. % NaCl solution. Geochimica et Cosmochimica Acta, 58, 10531063.Google Scholar
Borsi, S., Ferrara, G. and Tongiorgi, E. (1967) Determinazione con il metodo del K/Ar delle età delle rocce magmatiche della Toscana. Bollettino della Società Geologica Italiana, 86, 403410.Google Scholar
Boyce, A.J., Fulignati, P. and Sbrana, A. (2003) Deep hydrothermal circulation in the granite intrusion beneath Larderello geothermal area (Italy): constraints from mineralogy, fluid inclusions and stable isotopes. Journal of Volcanology and Geothermal Research, 126, 243262.Google Scholar
Brogi, A. and Liotta, D. (2008) Highly extended terrains, lateral segmentation of the substratum, and basin development: the Middle-Late Miocene Radicondoli Basin (inner northern Apennines, Italy). Tectonics, 27, TC 5002, https://doi.org/10.1029/2007TC002188Google Scholar
Brogi, A., Lazzarotto, A., Liotta, D. and Ranalli, G. CROP18 Working Group (2005) Crustal structures in the geothermal areas of southern Tuscany (Italy): insights from the CROP18 deep seismic reflection lines. Journal of Volcanology and Geothermal Research, 148, 6080.Google Scholar
Caiozzi, F., Fulignati, P., Gioncada, A. and Sbrana, A. (1998) Studio SEM-EDS dei minerali figli nelle inclusioni fluide del granito di Botro ai Marmi (Campiglia Marittima) e possibili implicazioni minerogenetiche. Atti della Società Toscana di Scienze Naturali, 105, 6573.Google Scholar
Carmignani, L., Decandia, F.A., Disperati, L., Fantozzi, P.L., Lazzarotto, A., Liotta, D. and Meccheri, M. (1994) Tertiary extensional tectonics in Tuscany (Northern Apenines, Italy). Tectonophysics, 238, 295315.Google Scholar
Cathelineau, M., Marignac, C., Boiron, M.C., Gianelli, G. and Puxeddu, M. (1994) Evidence for Li-rich brines and early magmatic fluid-rock interaction in the Larderello geothermal system. Geochimica et Cosmochimica Acta, 58, 10831099.Google Scholar
Chou, I.M. (1987) Phase relations in the system NaCl-KCl-H2O. III: Solubilities of halite in vapor-saturated liquids above 445°C and redetermination of phase equilibrium properties in the system NaCl-H2O to 1000°C and 1500 bars. Geochimica et Cosmochimica Acta, 51, 10651075.Google Scholar
Cline, J.S. and Bodnar, R.J. (1994) Direct evolution of brine from a crystallizing silicic melt at the Questa, New Mexico, molybdenum deposit. Economic Geology, 89, 17801802.Google Scholar
Cloke, P.L. and Kesler, S.E. (1979) The halite trend in hydrothermal solutions. Economic Geology, 74, 18231831.Google Scholar
Conticini, F., Menchetti, S., Sabelli, C. and Trosti Ferroni, R. (1980) Minerali di alterazione dei giacimenti a solfuri misti di Campiglia Marittima (Toscana). Rendiconti della Società Italiana di Mineralogia Petrografia, 36, 295308.Google Scholar
Crawford, M.L. (1981) Phase equilibria in aqueous fluid inclusions. Pp. 75100 in: Fluid Inclusions: Application to Petrology (Hollister, L.S. and Crawford, M.L., editors). Mineralogical Association of Canada Short Course Handbook, 6. Mineralogical Association of Canada, Quebec, Canada.Google Scholar
Darling, R.S. (1991) An extended equation to calculate NaCl contents from final clathrate melting temperatures in H2O-CO2-NaCl fluid inclusions: Implications for P-T isochore location. Geochimica et Cosmochimica Acta, 55, 38693871.Google Scholar
Dini, A., Gianelli, G., Puxeddu, M. and Ruggieri, G. (2005) Origin and evolution of Pliocene–Pleistocene granites from the Larderello geothermal field (Tuscan Magmatic Province, Italy). Lithos, 81, 131.Google Scholar
Dini, A., Mazzarini, F., Musumeci, G. and Rocchi, S. (2008) Multiple hydro-fracturing by boron-rich fluids in the Late Miocene contact aureole of eastern Elba Island (Tuscany, Italy). Terra Nova, 20, 318326.Google Scholar
Eastoe, C.G. (1978) A fluid inclusion study of the Panguna porphyry copper deposit, Bouganville, Papua New Guinea. Economic Geology, 73, 721748.Google Scholar
Fournier, R.O. (1991) The transition from hydrostatic to greater than hydrostatic fluid pressure in presently active continental hydrothermal systems in crystalline rock. Geophysical Research Letters, 18, 955958.Google Scholar
Fournier, R.O. (1999) Hydrothermal process related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Economic Geology, 94, 11931211.Google Scholar
Fulignati, P. (2017) Fluid inclusion evidence on the direct exsolution of magmatic brines from a granite intrusion beneath the eastern sector of Larderello geothermal field (Italy). Periodico di Mineralogia, 86, 201211.Google Scholar
Goldstein, R.H. (2003) Petrographic analysis of fluid inclusions. Pp. 953 in: Fluid Inclusions Analysis and Interpretation (Samson, I., Anderson, A. and Marshall, D., editors). Mineralogical Association of Canada, Short Course, Mineralogical Association of Canada Short Course Handbook, 32. Mineralogical Association of Canada, Quebec, Canada.Google Scholar
Goldstein, R.H. and Reynolds, T.J. (1994) Systematics of Fluid Inclusions in Diagenetic Minerals. Society for Sedimentary Geology Short Course, 31. SEPM, Tulsa, USA.Google Scholar
Hezarkhani, A. and Williams-Jones, A.E. (1998) Controls of alteration and mineralization in the Sungun porphyry copper deposit, Iran: Evidence from fluid inclusions and stable isotopes. Economic Geology, 93, 651670.Google Scholar
Innocenti, F., Serri, G., Ferrara, G., Manetti, P. and Tonarini, S. (1992) Genesis and classification of the rocks of the Tuscan Magmatic Province: thirty years after Marinelli's model. Acta Vulcanologica, 2, 247265.Google Scholar
Jolivet, L., Faccenna, C., Goffè, B., Mattei, M., Brunet, C., Rossetti, F., Cadet, J.P., Funiciello, R., Theye, T., Storti, F. and D'Agostino, N. (1998) Mid-crustal shear zones in postorogenic extension: example from the Northern Apennines case. Journal of Geophysical Research, 103, 1212312150.Google Scholar
Landtwing, M.R., Pettke, T., Halter, W.E., Heinrich, C.A., Redmond, P.B., Einaudi, M.T. and Kunze, K. (2005) Copper deposition during quartz dissolution by cooling magmatic-hydrothermal fluids: The Bingham porphyry. Earth and Planetary Science Letters, 235, 229243.Google Scholar
Lattanzi, P. (1999) Epithermal precious metal deposits of Italy – an overview. Mineralium Deposita, 34, 630638.Google Scholar
Lecumberri-Sanchez, P., Steele-MacInnis, M. and Bodnar, R.J. (2012) A numerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance. Geochimica et Cosmochimica Acta, 92, 1422.Google Scholar
Leoni, L. and Tamponi, M. (1991) Thermometamorphism in the Campiglia Marittima aureole (Tuscany, Italy). Neues Jahrbuch Mineralogie Meinshafte, 1991(4), 145157.Google Scholar
Maineri, C. (1996) Magmatic-hydrothermal system of the Isola del Giglio granitoid intrusion, Southern Tuscany. Plinius, 15, 103108.Google Scholar
Marinelli, G. (1963) L'energie geothermique en Toscane. Annales de la Société Géologique Belgique, 85, 417438.Google Scholar
Marinelli, G. (1969) Some geological data on the geothermal areas of Tuscany. Bulletin of Volcanology, 33, 1934.Google Scholar
Marinelli, G. (1983) Il magmatismo recente in Toscana e le sue implicazioni minerogenetiche. Memorie della Società Geologica Italiana, 25, 111124.Google Scholar
Martini, I.P. and Sagri, M. (1993) Tectonosedimentary characteristics of Late Miocene-Quaternary extensional basins of the Nothern Apennines. Earth Science Review, 34, 197233.Google Scholar
Peccerillo, A. (2001) Geochemistry and petrogenesis of Quaternary magmatism in central-southern Italy. Geochemistry International, 39, 521535.Google Scholar
Peccerillo, A. and Donati, C. (2003) The Tuscan Magmatic Province. Periodico di Mineralogia, 72, 2739.Google Scholar
Poli, G., Manetti, P. and Tommasini, S. (1989) A petrological review on Miocene-Pliocene intrusive rocks from Southern Tuscany and Tyrrhenian Sea (Italy). Periodico di Mineralogia, 58, 109126.Google Scholar
Quan, R.A., Cloke, P.L. and Kesler, S.E. (1987) Chemical analyses of halite trend inclusions from the Granisle porphyry copper deposit, British Columbia. Economic Geology, 82, 19121930.Google Scholar
Rocchi, S., Dini, A., Mazzarini, F. and Poli, G. (2003) Campiglia Marittima and Gavorrano intrusive magmatism. Periodico di Mineralogia, 72, 127132.Google Scholar
Roedder, E. (Editor) (1984) Fluid Inclusions. Reviews in Mineralogy, 12, Mineralogical Society of America, Washington, D.C., 646 pp.Google Scholar
Rossetti, F. and Tecce, F. (2008) Composition and evolution of fluids during skarn development in the Monte Capanne thermal aureole, Elba Island, central Italy. Geofluids, 8, 167180.Google Scholar
Rossetti, F., Faccenna, C., Acocella, V., Funiciello, R., Jolivet, L. and Salvini, F. (2000) Pluton emplacement in the northern Tyrrhenian Sea area (Italy). Pp. 5577 in: Salt, Shale and Igneous Diapirs in and around Europe (Vendeville, B.C., Mart, Y. and Vigneresse, J.-L., editors). Journal of the Geological Society of London Special Publication, 174.Google Scholar
Rossetti, F., Balsamo, F., Villa, I.M., Bouybaouenne, M., Faccenna, C. and Funiciello, R. (2008) Pliocene-Pleistocene HT-LP metamorphism during multiple granitic intrusions in the southern branch of the Larderello geothermal field (southern Tuscany, Italy). Journal of the Geological Society of London, 165, 247262.Google Scholar
Ruggieri, G. and Gianelli, G. (1999) Multi-stage fluid circulation in a hydraulic fracture breccia of the Larderello geothermal field (Italy). Journal of Volcanology and Geothermal Research, 90, 241261.Google Scholar
Ruggieri, G. and Lattanzi, P. (1992) Fluid inclusion studies on Mt. Capanne pegmatites, Isola d'Elba, Tuscany, Italy. European Journal of Mineralogy, 4, 10851096.Google Scholar
Ruggieri, G., Cathelineau, M., Boiron, M.C. and Marignac, C. (1999) Boiling and fluid mixing in the chlorite zone of the Larderello geothermal system. Chemical Geology, 154, 237256.Google Scholar
Serri, G., Innocenti, F. and Manetti, P. (1993) Geochemical and petrological evidence of the subduction of delaminated Adriatic continental lithosphere in the genesis of the Neogene-Quaternary magmatism of central Italy. Tectonophysics, 223, 117147.Google Scholar
Steele-MacInnis, M., Lecumberri-Sanchez, P. and Bodnar, R.J. (2012) HOCKIEFLINCS-H2O-NACL: A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O–NaCl. Computer Geoscience, 49, 334337.Google Scholar
Stefanini, B. and Williams-Jones, A.E. (1996) Hydrothermal evolution in the Calabona porphyry copper system (Sardinia, Italy): The path to an uneconomic deposit. Economic Geology, 91, 774791.Google Scholar
Sterner, S.M., Hall, D.L. and Bodnar, R.J. (1988) Synthetic fluid inclusions. V. Solubility relations in the system NaCl-KCl-H2O under vapor-saturated conditions. Geochimica et Cosmochimica Acta, 52, 9891006.Google Scholar
Tanelli, G. (1983) Mineralizzazioni metallifere e minerogenesi della Toscana. Memorie della Società Geologica Italiana, 25, 91109.Google Scholar
Tanelli, G., Morelli, F. and Benvenuti, M. (1993) I minerali del Campigliese: “beni ambientali, culturali e industriali.” Bollettino della Società Geologica Italiana, 112, 715728.Google Scholar
Valori, A., Cathelineau, M. and Marignac, C. (1992) Early fluid migration in a deep part of the Larderello geothermal field: a fluid inclusion study of the granite sill from well Monteverdi 7. Journal of Volcanology and Geothermal Research, 51, 115131.Google Scholar
Vezzoni, S., Dini, A. and Rocchi, S. (2016) Reverse telescoping in a distal skarn system (Campiglia Marittima, Italy). Ore Geology Review, 77, 176193.Google Scholar
Wilson, J.W.J., Kesler, S.E., Cloke, P.L. and Kelly, W.C. (1980). Fluid inclusion geochemistry of the Granisle and Bell porphyry copper deposits, British Columbia. Economic Geology, 75, 4561.Google Scholar