Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-06-02T11:54:34.408Z Has data issue: false hasContentIssue false

Lithium tourmalines from the Meldon aplite, Devonshire, England

Published online by Cambridge University Press:  05 July 2018

M. N. Chaudhry
Affiliation:
Department of Geology, University of the Panjab, Lahore, Pakistan
R. A. Howie
Affiliation:
Department of Geology, King's College, London, WC2R 2LS

Summary

Seven chemical analyses of pink or green tourmalines belonging to the elbalte-schorl series, along with their physical, optical, and X-ray data are presented. Linear variation diagrams showing the relationship between composition and refractive indices, specific gravities, and cell parameters are constructed. Relationship between colour and chemical composition is also discussed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Belov, (N. V.) and Belova, (E. N.) [ (E. H.)], 1949. Crystal structure of tourmaline. Doklady Acad. Sci. USSR, 69, 185-8.Google Scholar
Carobbi, (G.) and Pieruccini, (R.), 1947. Spectrographic analysis of tourmalines from the island of Elba. Amer. Min. 32, 121-30.Google Scholar
Deer, (W. A.), Howm, (R. A.), and Zussman, (J.), 1962. Rock-forming Minerals. London (Longmans), 1, 300 and 320.Google Scholar
Donnay, (G.) and Buerger, (M. J.), 1950. The determination of the crystal structure of tourmaline. Acta Cryst. 3, 379-88.CrossRefGoogle Scholar
Donnay, (G.), Ingamells, (C. O.), and Mason, (B.), 1966. Buergerite, a new species of tourmaline. Amer. Min. 51, 198-9 [M.A. 17-767].Google Scholar
Epprecht, (W.), 1953. Die Gitterkonstanten der Turmalin. Schweiz. Min. Petr. Mitt. 33, 481-505.Google Scholar
Faye, (G. H.), Manning, (P. G.), Gosselin, (J. R.), and Tremblay, (R. J.), 1974. The optical absorption spectra of tourmaline: importance of charge-transfer processes. Can. Min. 12, 370-80.Google Scholar
Foit, (F. F. Jr.) and Rosenberg, (P. E.), 1974. Coupled substitutions in tourmaline. Trans. Amer. Geophys. Union, 55, 67.Google Scholar
Hermon, (E.), Simkin, (D. J.), Donnay, (G.), and Muir, (W. B.) 1973. The distribution of Fe2+ and Fe3+ in iron-bearing tourmalines: a Mössbauer study. Tschermak's Min. Petr. Mitt. 19, 124-32 [M.A. 74-137].CrossRefGoogle Scholar
Ito, (T.) and Sadanaga, (R.), 1951. A Fourier analysis of the structure of tourmaline. Acta. Cryst. 4, 385-90.CrossRefGoogle Scholar
Manning, (P. G.), 1969. An optical absorption study of the origin of colour and pleochroism in pink and brown tourmalines. Can. Min. 9, 678-90 [M.A. 70-1539].Google Scholar
Quensel, (P.) and Gabrielson, (O.), 1939. Minerals of the Varutrask pegmatite. XIV. The tourmaline group. Geol, För. Förh. Stockholm, 61, 63-90.CrossRefGoogle Scholar
Wilkins, (R. W. T.), Farrell, (E. F.), and Nainan, (C. S.), 1969. The crystal field spectra and dichroism of tourmaline. Journ. Phys. Chem. Solids, 30, 43-56 [M.A. 71-2227].CrossRefGoogle Scholar
Worth, (R. H.), 1920. The geology of the Meldon Valleys near Okehampton, on the northern verge of Dartmoor. Quart. dourn. Geol. Soc. 75, 77-114.CrossRefGoogle Scholar